Methamphetamine Blocks Adenosine A Receptor Activation via Sigma 1 and Cannabinoid CB Receptors.

Int J Mol Sci

Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), Instituto de Salud Carlos III, 28031 Madrid, Spain.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Methamphetamine is, worldwide, one of the most consumed drugs of abuse. One important side effect is neurodegeneration leading to a decrease in life expectancy. The aim of this paper was to check whether the drug affects one of the receptors involved in neurodegeneration/neuroprotection events, namely the adenosine A receptor (AR). First, we noticed that methamphetamine does not affect A functionality if the receptor is expressed in a heterologous system. However, AR becomes sensitive to the drug upon complexes formation with the cannabinoid CB receptor (CBR) and the sigma 1 receptor (σR). Signaling via both adenosine AR and cannabinoid CBR was affected by methamphetamine in cells co-expressing the two receptors. In striatal primary cultures, the AR-CBR heteromer complex was detected and methamphetamine not only altered its expression but completely blocked the AR- and the CBR-mediated activation of the mitogen activated protein kinase (MAPK) pathway. In conclusion, methamphetamine, with the participation of σR, alters the expression and function of two interacting receptors, AR, which is a therapeutic target for neuroprotection, and CBR, which is the most abundant G protein-coupled receptor (GPCR) in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7963146PMC
http://dx.doi.org/10.3390/ijms22052743DOI Listing

Publication Analysis

Top Keywords

adenosine receptor
8
methamphetamine
6
receptor
6
methamphetamine blocks
4
blocks adenosine
4
receptor activation
4
activation sigma
4
sigma cannabinoid
4
receptors
4
cannabinoid receptors
4

Similar Publications

Residence time, which refers to the average duration a drug remains bound to its receptor, is a crucial parameter in determining its pharmacological effects. However, the mechanisms governing the residence time of G protein-coupled receptor (GPCR) ligands remain unclear. In this study, we observed NMR signals from the methyl groups of alanine and methionine located at the intersection of the binding cavity and extracellular loops of AAR under conditions where E165Q and T256A mutations led to reduced residence times.

View Article and Find Full Text PDF

The immune system uses a variety of DNA sensors, including endo-lysosomal Toll-like receptors 9 (TLR9) and cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthase (cGAS). These sensors activate immune responses by inducing the production of a variety of cytokines, including type I interferons (IFN). Activation of cGAS requires DNA-cGAS interaction.

View Article and Find Full Text PDF

Structural basis of adenosine 2A receptor-balanced signaling activation relies on allosterically mediated structural dynamics.

Cell Chem Biol

September 2025

iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA; Institute of Molecular Biology and Bio

Balanced or biased G protein and arrestin transmembrane signaling by the adenosine 2A receptor (AAR) is related to ligand-induced allosterically triggered variation of structural dynamics in the intracellular half of the transmembrane domain (TMD). F-nuclear magnetic resonance (NMR) of a network of genetically introduced meta-trifluoromethyl-L-phenylalanine (mtfF) probes in the core of the TMD revealed signaling-related structure rearrangements leading from the extracellular orthosteric drug-binding site to the G protein and arrestin contacts on the intracellular surface. The key element in this structural basis of signal transfer is dynamic loss of structural order in the intracellular half of the TMD, as manifested by local polymorphisms and associated rate processes within the molecular architecture determined previously by X-ray crystallography.

View Article and Find Full Text PDF

This study investigates the potential protective effects of eugenol on cecal ligation puncture (CLP) induced sepsis rat model. CLP was used to induce sepsis in rats and then treated with eugenol at doses of 25 and 50 mg/kg, i.p.

View Article and Find Full Text PDF

Trans-Coumaryl acetate (T-CA) is formed by the esterification of coumarin with acetic acid and belongs to the reprogramming products of aromatic amino acid and fatty acid metabolism. Currently, the impact of T-CA on the progression of septic acute kidney injury (SAKI) and its underlying mechanisms are not clear. A lipopolysaccharide (LPS)-treated HK-2 cell injury model was constructed, and a mouse SAKI model was constructed using a cecum ligation and puncture method.

View Article and Find Full Text PDF