Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial predation is a ubiquitous and fundamental biological process, which influences the community composition of microbial ecosystems. Among the best characterised bacterial predators are the myxobacteria, which include the model organism Myxococcus xanthus. Predation by M. xanthus involves the secretion of antibiotic metabolites and hydrolytic enzymes, which results in the lysis of prey organisms and release of prey nutrients into the extracellular milieu. Due to the generalist nature of this predatory mechanism, M. xanthus has a broad prey range, being able to kill and consume Gram-negative/positive bacteria and fungi. Potential prey organisms have evolved a range of behaviours which protect themselves from attack by predators. In recent years, several investigations have studied the molecular responses of a broad variety of prey organisms to M. xanthus predation. It seems that the diverse mechanisms employed by prey belong to a much smaller number of general "predation resistance" strategies. In this mini-review, we present the current state of knowledge regarding M. xanthus predation, and how prey organisms resist predation. As previous molecular studies of prey susceptibility have focussed on individual genes/metabolites, we have also undertaken a genome-wide screen for genes of Pseudomonas aeruginosa which contribute to its ability to resist predation. P. aeruginosa is a World Health Organisation priority 1 antibiotic-resistant pathogen. It is metabolically versatile and has an array of pathogenic mechanisms, leading to its prevalence as an opportunistic pathogen. Using a library of nearly 5,500 defined transposon insertion mutants, we screened for "prey genes", which when mutated allowed increased predation by a fluorescent strain of M. xanthus. A set of candidate "prey proteins" were identified, which shared common functional roles and whose nature suggested that predation resistance by P. aeruginosa requires an effective metal/oxidative stress system, an intact motility system, and mechanisms for de-toxifying antimicrobial peptides.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000515546DOI Listing

Publication Analysis

Top Keywords

prey organisms
16
xanthus predation
12
predation
10
prey susceptibility
8
pseudomonas aeruginosa
8
myxococcus xanthus
8
prey
8
resist predation
8
xanthus
7
genetics prey
4

Similar Publications

Boat noise alters behaviour of two coral reef macroinvertebrates, Lambis lambis and Tridacna maxima.

Mar Pollut Bull

September 2025

Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.

Boat noise has been shown to distract and cause harm to many marine organisms. Most of the study effort has focused on fish & marine mammals, even though invertebrates represent over 92 % of all marine life. The few studies conducted on invertebrates have demonstrated clear negative effects of anthropogenic noise pollution.

View Article and Find Full Text PDF

In live specimens of the nemertodermatidan Flagellophora apelti Faubel and Dörjes, 1978, a peculiar organ looking like a fascicle of bristles-and so called a broom organ by its discoverer-occupies the front third or so of the body. The animal can extrude the organ to splay the bristles in a fan-like array, each bristle having an adhesive tip. Described first by light histology as a bundle of flagella, this organ can be seen by transmission electron microscopy to be actually a bundle of exceedingly long necks of glands.

View Article and Find Full Text PDF

Electrophysiological responses of the clam (Ruditapes decussatus) osphradium to amino acids and alarm cues.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

September 2025

Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, 8005- 139, Portugal.

Chemical sensing of the surrounding environment is crucial for many aspects of bivalve biology, such as food detection and predator avoidance. Aquatic organisms strongly depend on chemosensory systems; however, little is known about chemosensory systems in bivalves. To understand how the carpet shell clam (Ruditapes decussatus) senses its surrounding chemical environment, we used an electrophysiological technique - the electro-osphradiogram - to assess the sensitivity of the osphradium to different putative odorants (amino acids, bile acids) and odours (predator-released cues and signals from con- and heterospecific bivalves).

View Article and Find Full Text PDF

Many species use camouflage to dissimulate their true form and avoid detection or recognition. In natural habitats, the three-dimensional structure of an organism's body can present challenges for camouflage, as overhead illumination creates luminance gradients ('self-shadows') across the body surface and cast shadows (when light is blocked by the object itself) on the surface behind the object. While self-shadows are known to increase prey detectability to predators, it is unclear whether this is also the case for cast shadows.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a critical global health issue caused by antibiotic overuse, leading to the rise of multi-resistant pathogens such as in bacteria of the ESKAPE group. Alternative or combination therapies, including bacteriophages and plaque-forming predatory bacteria, are being explored in response. , a Gram-negative bacterial predator belonging to the and like organisms (BALOs), can kill other Gram-negative bacteria after the periplasmic invasion, including multidrug-resistant pathogens.

View Article and Find Full Text PDF