Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A pentanucleotide TTTCA repeat insertion into a polymorphic TTTTA repeat element in SAMD12 causes benign adult familial myoclonic epilepsy. Although the precise determination of the entire SAMD12 repeat sequence is important for molecular diagnosis and research, obtaining this sequence remains challenging when using conventional genomic/genetic methods, and even short-read and long-read next-generation sequencing technologies have been insufficient. Incomplete information regarding expanded repeat sequences may hamper our understanding of the pathogenic roles played by varying numbers of repeat units, genotype-phenotype correlations, and mutational mechanisms. Here, we report a new approach for the precise determination of the entire expanded repeat sequence and present a workflow designed to improve the diagnostic rates in various repeat expansion diseases. We examined 34 clinically diagnosed benign adult familial myoclonic epilepsy patients, from 29 families using repeat-primed PCR, Southern blot, and long-read sequencing with Cas9-mediated enrichment. Two cases with questionable results from repeat-primed PCR and/or Southern blot were confirmed as pathogenic using long-read sequencing with Cas9-mediated enrichment, resulting in the identification of pathogenic SAMD12 repeat expansions in 76% of examined families (22/29). Importantly, long-read sequencing with Cas9-mediated enrichment was able to provide detailed information regarding the sizes, configurations, and compositions of the expanded repeats. The inserted TTTCA repeat size and the proportion of TTTCA sequences among the overall repeat sequences were highly variable, and a novel repeat configuration was identified. A genotype-phenotype correlation study suggested that the insertion of even short (TTTCA)14 repeats contributed to the development of benign adult familial myoclonic epilepsy. However, the sizes of the overall TTTTA and TTTCA repeat units are also likely to be involved in the pathology of benign adult familial myoclonic epilepsy. Seven unsolved SAMD12-negative cases were investigated using whole-genome long-read sequencing, and infrequent, disease-associated, repeat expansions were identified in two cases. The strategic workflow resolved two questionable SAMD12-positive cases and two previously SAMD12-negative cases, increasing the diagnostic yield from 69% (20/29 families) to 83% (24/29 families). This study indicates the significant utility of long-read sequencing technologies to explore the pathogenic contributions made by various repeat units in complex repeat expansions and to improve the overall diagnostic rate.

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab021DOI Listing

Publication Analysis

Top Keywords

long-read sequencing
24
sequencing cas9-mediated
16
cas9-mediated enrichment
16
benign adult
16
adult familial
16
familial myoclonic
16
myoclonic epilepsy
16
repeat
15
tttca repeat
12
repeat units
12

Similar Publications

Advances in Oxford Nanopore Technologies (ONT) with the introduction of the r10.4.1 flow cell have reduced the sequencing error rates to <1%.

View Article and Find Full Text PDF

Benchmarking Ploidy Estimation Methods for Bulk and Single-Cell Whole Genome Sequencing.

Adv Sci (Weinh)

September 2025

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.

Maintaining cellular ploidy is critical for normal physiological processes, although gains in ploidy are frequently observed during development, tissue regeneration, and metabolism, and potentially contribute to aneuploidy, thereby promoting tumor evolution. Although numerous computational tools have been developed to estimate cellular ploidy from whole-genome sequencing (WGS) data at bulk or single-cell resolution, to the knowledge, no systematic comparison of their performance has been conducted. Here, a benchmarking study is presented of 11 methods for bulk WGS and 8 methods for single-cell WGS data, utilizing both experimental and simulated datasets derived from diploid cells mixed with aneuploid or polyploid cells.

View Article and Find Full Text PDF

Chromosome-scale genome assembly of Sauvagesia rhodoleuca (Ochnaceae) provides insights into its genome evolution and demographic history.

DNA Res

September 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.

Sauvagesia rhodoleuca is an endangered species endemic to southern China. Due to human activities, only six fragmented populations remain in Guangdong and Guangxi. Despite considerable conservation efforts, its demographic history and evolution remain poorly understood, particularly from a genomic perspective.

View Article and Find Full Text PDF

Easy reference-guided assembly of nanopore whole plasmid sequencing datasets.

Anal Biochem

September 2025

Vegetable and Fruit Improvement Center and Department of Horticultural Sciences Texas A&M University, College Station, TX 77843, USA; Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX 77843, USA. Electronic address:

Whole plasmid sequencing (WPS) using Nanopore long read sequencing has emerged as a cost-effective alternative for dideoxy sequencing methods. De novo sequence assembly for large plasmids, however, are not always successful and may produce large assembly gaps. Here we streamlined a reference guided alignment of WPS nanopore reads using galaxy platform.

View Article and Find Full Text PDF

Resistomic features and novel genetic element identified in hospital wastewater with short- and long-read metagenomics.

Ecotoxicol Environ Saf

September 2025

Qilu Hospital Qingdao, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China. Electronic address:

The global spread of antimicrobial resistance (AMR) poses a serious threat to public health, with hospital wastewater treatment plants (WWTPs) recognized as a key hotspot for resistant pathogens and antibiotic resistance genes (ARGs). This study employed advanced hybrid sequencing platforms to provide a comprehensive resistomic analysis of a Qingdao WWTP in China, revealing previously uncovered AMR transmission risks. We identified 175 ARG subtypes conferring resistance to 38 antimicrobials, including the last-resort antibiotics, highlighting the extensive and concerning resistance reservoir within this environment.

View Article and Find Full Text PDF