98%
921
2 minutes
20
Waterlogging has increasingly become one of the major constraints to maize (Zea mays L.) production in some maize growing areas as it seriously decreases the yield. Waterlogging tolerance in maize germplasm provides a basis for maize waterlogging improvement. In this study, nine seedling traits, plant height (PH), root length (RL), shoot dry weight (SDW), root dry weight (RDW), adventitious root number (ARN), node number of brace root (BRNN), brace root number (BRN), brace root dry weigh (BRDW), survival rate (SR), and the secondary traits that were defined as relative phenotypic value of seedling traits under waterlogging and control treatments were used in a natural population that contain 365 inbred lines to evaluate the waterlogging tolerance of tropical maize. The result showed that maize waterlogging tolerance was genetically controlled and seedling traits were significantly different between the control and waterlogging treatments. PH, RL, SDW, and RDW are important seedling traits for waterlogging tolerance identification. Some tropical maize inbred lines were identified with extreme waterlogging tolerance that can provide an important germplasm resource for breeding. Population structure analysis showed that two major phylogenetic subgroups in tropical maize could be identified. Genome-wide association study (GWAS) using 39,266 single nucleotide polymorphisms (SNPs) across the whole genome identified 49 trait-SNPs distributed on over all 10 chromosomes excluding chromosome 10. Seventy-one significant SNPs, distributed on all 10 chromosomes excluding chromosome 5, were identified by extend bulked sample analysis (Ext-BSA) based on the inbred lines with extreme phenotypes. GWAS and Ext-BSA identified the same loci on bin1.07, bin6.01, bin2.09, bin6.04, bin7.02, and bin7.03. Nine genes were proposed as potential candidate genes. Cloning and functional validation of these genes would be helpful for understanding the molecular mechanism of waterlogging tolerance in maize.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13353-021-00629-0 | DOI Listing |
Physiol Plant
September 2025
Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), Granada, Spain.
Waterlogging, increasingly intensified by climate change, limits oxygen availability in the root zone, disrupting carbon and sugar metabolism, leading to energy deficits and oxidative stress that ultimately impair plant growth and productivity. Melatonin, a versatile signaling molecule, mitigates waterlogging-induced stress by enhancing anaerobic respiration and fermentation under oxygen-deprived conditions, upregulating stress-responsive genes, and restoring energy balance through optimized sugar metabolism. It also reduces oxidative damage by strengthening the antioxidant defense system and further improves stress tolerance by modulating phytohormone signaling and influencing rhizosphere microbiome dynamics.
View Article and Find Full Text PDFContour Tunable Resurfacing Laser (TRL™) is an erbium: yttrium aluminum garnet (YAG) fully ablative laser commonly used to treat the delicate lower eyelid skin for undereye rejuvenation. Post-treatment patients experience discomfort and extensive downtime. This pilot study incorporated an innovative post-procedure treatment that addresses patient concerns to skin rejuvenation procedures to improve patient relief and recovery, while improving patient retention.
View Article and Find Full Text PDFBackground: Energy-based devices are commonly used to improve the appearance of aging skin. Treatments can involve long recovery times, marked by pain, erythema, edema, and purpura, which is often a limiting factor in a patient’s willingness to undergo a procedure.
Objective: This study evaluated the safety and effectiveness of an Angiopoietin-1 derived QHREDGS peptide (Q-peptide) hydrogel and ointment, in comparison to a peptide-free control, in enhancing healing and patient satisfaction after radiofrequency microneedling (RFMN) treatment.
Front Plant Sci
August 2025
Division of Crop Improvement, ICAR- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, India.
PP2C phosphatases regulate key physiological processes in plants, essential for growth, development, and stress responses. Sugarcane, a vital crop for many economies, faces severe abiotic stress, which negatively impacts production. Given the role of the PP2C gene family in stress tolerance and the recent publication of the genome sequence of the modern polyploid sugarcane cultivar R570, this study conducted genome-wide identification and characterization of the PP2C gene family in sugarcane.
View Article and Find Full Text PDFPlant J
September 2025
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Stress Biology, Innovation Center for Evolutionary Synthetic Biology, School of Ecology and School of Life Sciences, Sun Yat-sen University, Guangdong, China.
Mangrove plants, originating from inland ancestors, have independently adapted to extreme intertidal zones characterized by salt and hypoxia stress. While typical mangroves exhibit specialized phenotypes, like viviparous seeds and salt secretion, atypical clades that have thrived without such traits are particularly suitable for exploring the molecular and physiological basis underlying plant adaptation to intertidal zones. We assembled a chromosome-level genome of an atypical mangrove, Scyphiphora hydrophylacea, the only mangrove species in Gentianales.
View Article and Find Full Text PDF