Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The overexpression of hoxd13a during zebrafish fin development causes distal endochondral expansion and simultaneous reduction of the finfold, mimicking the major events thought to have happened during the fin-to-limb transition in Vertebrates. We investigated the effect of hoxd13a overexpression on putative downstream targets and found it to cause downregulation of proximal fin identity markers (meis1 and emx2) and upregulation of genes involved in skeletogenesis/patterning (fbn1, dacha) and AER/Finfold maintenance (bmps). We then show that bmp2b overexpression leads to finfold reduction, recapitulating the phenotype observed in hoxd13a-overexpressing fins. In addition, we show that during the development of the long finfold in leo/lof mutants, hoxd13a and bmp2b are downregulated. Our results suggest that modulation of the transcription factor Hoxd13 during evolution may have been involved in finfold reduction through regulation of the Bmp signalling that then activated apoptotic mechanisms impairing finfold elongation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8009906PMC
http://dx.doi.org/10.1038/s41598-021-86621-4DOI Listing

Publication Analysis

Top Keywords

finfold reduction
8
finfold
6
hoxd13/bmp2-mediated mechanism
4
mechanism involved
4
involved zebrafish
4
zebrafish finfold
4
finfold design
4
design overexpression
4
overexpression hoxd13a
4
hoxd13a zebrafish
4

Similar Publications

In tetrapods, BMP-signaling coordinates limb outgrowth, skeleton patterning, and apoptosis during the formation of their typical autopod structures, the digits. In addition, inhibition of BMP signaling during mouse limb development leads to the persistence and enlargement of an important signaling center, the apical ectodermal ridge (AER), and consequent digit defects. Interestingly, during fish fin development there is a natural elongation of the AER, rapidly converted into an apical finfold (FF), in which osteoblasts differentiate into dermal fin-rays used in aquatic locomotion.

View Article and Find Full Text PDF

The overexpression of hoxd13a during zebrafish fin development causes distal endochondral expansion and simultaneous reduction of the finfold, mimicking the major events thought to have happened during the fin-to-limb transition in Vertebrates. We investigated the effect of hoxd13a overexpression on putative downstream targets and found it to cause downregulation of proximal fin identity markers (meis1 and emx2) and upregulation of genes involved in skeletogenesis/patterning (fbn1, dacha) and AER/Finfold maintenance (bmps). We then show that bmp2b overexpression leads to finfold reduction, recapitulating the phenotype observed in hoxd13a-overexpressing fins.

View Article and Find Full Text PDF

This study focused on the anatomy and ontogeny of saddleback syndrome (SBS) in reared European sea bass. The abnormality was detected at an unusually high frequency (12-94%) during a routine quality control in a commercial hatchery. Anatomically the abnormality was mainly characterized by the loss of 1-5 hard spines and severe abnormalities of the proximal pterygiophores (anterior dorsal fin), size reduction of a few lepidotrichia, missing lepidotrichia and/or lepidotrichia of poor ossification (posterior dorsal fin).

View Article and Find Full Text PDF

The reduction potential of a cell is related to its fate. Proliferating cells are more reduced than those that are differentiating, whereas apoptotic cells are generally the most oxidized. Glutathione is considered the most important cellular redox buffer and the average reduction potential (Eh) of a cell or organism can be calculated from the concentrations of glutathione (GSH) and glutathione disulfide (GSSG).

View Article and Find Full Text PDF

New frontiers in the evolution of fin development.

J Exp Zool B Mol Dev Evol

November 2014

IBMC-Instituto de Biologia Celular e Molecular, Porto, Portugal.

The locomotory appendages of vertebrates have undergone significant changes during evolution, which likely promoted a wide range of adaptive strategies. These appendages first evolved as unpaired finfolds in the dorsal midline of early chordates, more than 500 million years ago. Later on, during vertebrates' radiation, two sets of locomotory appendages emerged, developing from both sides of the latero-ventral body wall.

View Article and Find Full Text PDF