Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ (11) = 39.8, p = 3.8 × 10), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant's individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8007749PMC
http://dx.doi.org/10.1038/s41398-021-01307-9DOI Listing

Publication Analysis

Top Keywords

stria terminalis
12
randomised double-blind
8
double-blind sham-controlled
8
deep brain
8
brain stimulation
8
bed nucleus
8
nucleus stria
8
treatment-resistant obsessive-compulsive
8
obsessive-compulsive disorder
8
open phase
8

Similar Publications

In most species, individuals must be able to identify threats, peers, and potential mates to survive. The distinction of kin from non-kin and novel conspecifics from familiars is essential to the successful categorization of these identities. Although oxytocin (OXT) signaling has been implicated in social recognition, little is known about the contributions of distinct OXT-producing cell groups to distinguishing conspecific type.

View Article and Find Full Text PDF

Background: Sodium homeostasis is crucial for physiological balance, yet the neurobiological mechanisms underlying sodium appetite remain incompletely understood. The nucleus tractus solitarii (NTS) integrates visceral signals to regulate feeding behaviors, including sodium intake. This study investigated the role of 11β-hydroxysteroid dehydrogenase type 2 (HSD2)-expressing neurons in the NTS in mediating sodium appetite under low-sodium diet (LSD) conditions and elucidated the molecular pathways involved, particularly the cyclic adenosine monophosphate (cAMP)/mitogen-activated protein kinase (MAPK) signaling cascade.

View Article and Find Full Text PDF

Excessive alcohol use causes a great deal of harm and negative health outcomes. Corticotrophin releasing factor (CRF), a stress-related neuropeptide, has been implicated in binge ethanol intake and ethanol dependence in rodents. CRF containing neurons in the bed nucleus of the stria terminalis (BNST) can influence ethanol consumption.

View Article and Find Full Text PDF

Introduction: Stroke can lead to neurological changes beyond the initial lesion site, including post-stroke crossed-cerebellar degeneration. While traditional methods typically rely on total lesion volume to assess remote effects, the spatial distribution of lesions may more accurately predict cerebellar atrophy and associated functional deficits. This study investigated whether anatomically specific cortical lesions contribute to cerebellar gray matter volume loss, expanding on the hypothesis that cerebellar atrophy may reflect more than global brain injury severity, and instead result from targeted disruption of cortico-cerebellar pathways.

View Article and Find Full Text PDF

Aim: The bed nucleus of the stria terminalis (BST), situated deep within the basal forebrain, serves as a key relay in circuits regulating emotion, stress, and autonomic responses. Despite its clinical relevance, particularly in anxiety-related disorders, its detailed white matter connectivity remains underexplored. This study aims to provide an in-depth anatomical description of the BST and its structural affiliations, with an emphasis on its surgical and neuromodulatory relevance.

View Article and Find Full Text PDF