Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Amyloid-β (Aβ) dysmetabolism is thought to be the main trigger for neurodegenerative events in Alzheimer's disease (AD). In particular, soluble Aβ oligomers (AβOs) are proposed as key mediators of synaptic and cognitive dysfunction in AD. Over the past few decades, AβOs prepared from synthetic Aβ have been widely applied in vitro and in vivo, the so-called chemical models of AD, uncovering their multiple neurotoxic mechanisms. However, the lack of a reliable quality control (QC) for synthetic AβOs may reflect poor experimental reproducibility. In keeping with this, we optimized and validated a rapid and reproducible SECHPLC method using fluorescence detection for the QC of synthetic AβOs. Our analytical method offers an unprecedent alternative to improve the reproducibility of AD chemical models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2021.462024 | DOI Listing |