Publications by authors named "Luis Eduardo Santos"

The accumulation of soluble oligomers of the amyloid-β peptide (AβOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AβOs and shows minimal reactivity to Aβ monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AβOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain.

View Article and Find Full Text PDF

Amyloid-β (Aβ) dysmetabolism is thought to be the main trigger for neurodegenerative events in Alzheimer's disease (AD). In particular, soluble Aβ oligomers (AβOs) are proposed as key mediators of synaptic and cognitive dysfunction in AD. Over the past few decades, AβOs prepared from synthetic Aβ have been widely applied in vitro and in vivo, the so-called chemical models of AD, uncovering their multiple neurotoxic mechanisms.

View Article and Find Full Text PDF

Western societies experienced drastic changes in eating habits during the past century. The modern nutritional profile, typically rich in saturated fats and refined sugars, is recognized as a major contributing factor, along with reduced physical activity, to the current epidemics of metabolic disorders, notably obesity and diabetes. Alongside these conditions, recent years have witnessed a gradual and significant increase in prevalence of brain diseases, particularly mood disorders.

View Article and Find Full Text PDF

Neurospheres prepared from multipotent progenitors in the retina obtained from postnatal mice differentiate into neurons and Müller glia (De Melo Reis et al., in Cell Mol Neurobiol 31:835-846, 2011). Here, we investigated whether neurospheres prepared from adult chickens (ciliary marginal zone, CMZ) or (ciliary body) retina could also lead to differentiated neurons and glia.

View Article and Find Full Text PDF

Mania is characterized by elevated drive and mood but animal models of mania have often neglected elevated mood. Ultrasonic vocalizations (USV) of 50-kHz emitted by rats are thought to index the subject's positive affective state. Fifty-kHz USV emission is increased by amphetamine, an effect blocked by lithium administration.

View Article and Find Full Text PDF

Alzheimer's disease (AD) and major depressive disorder (MDD) are highly prevalent neuropsychiatric conditions with intriguing epidemiological overlaps. Depressed patients are at increased risk of developing late-onset AD, and around one in four AD patients are co-diagnosed with MDD. Microglia are the main cellular effectors of innate immunity in the brain, and their activation is central to neuroinflammation - a ubiquitous process in brain pathology, thought to be a causal factor of both AD and MDD.

View Article and Find Full Text PDF

The chemical composition of the essential oil isolated from the aerial parts of Melampodium divaricatum (Rich.) DC. (Asteraceae) was characterized by GC-FID and GC/MS analyses.

View Article and Find Full Text PDF

Müller cells constitute the main glial cell type in the retina where it interacts with virtually all cells displaying relevant functions to retinal physiology. Under appropriate stimuli, Müller cells may undergo dedifferentiation, being able to generate other neural cell types. Here, we show that purified mouse Müller cells in culture express a group of proteins related to the dopaminergic phenotype, including the nuclear receptor-related 1 protein, required for dopaminergic differentiation, as well the enzyme tyrosine hydroxylase.

View Article and Find Full Text PDF

Dysregulated cholinergic signaling is an early hallmark of Alzheimer disease (AD), usually ascribed to degeneration of cholinergic neurons induced by the amyloid-β peptide (Aβ). It is now generally accepted that neuronal dysfunction and memory deficits in the early stages of AD are caused by the neuronal impact of soluble Aβ oligomers (AβOs). AβOs build up in AD brain and specifically attach to excitatory synapses, leading to synapse dysfunction.

View Article and Find Full Text PDF