Glucocorticoid receptor dimerization in the cytoplasm might be essential for nuclear localization.

Biochem Biophys Res Commun

Pharmacogenetic Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.

Published: May 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The glucocorticoid receptor (GR) plays an important role in steroid-dependent regulation of metabolism, development, and the immune response in humans. Although GR is known to be activated by the binding of glucocorticoid, the mechanism of action is poorly understood. We investigated dimerization of GR in the cytoplasm and nuclear trans-localization in response to treatment with the ligand dexamethasone. GFP-tagged GR and FLAG-tagged GR were co-expressed in COS-1 cells, and cell lysates were subjected to co-immunoprecipitation assay with anti-GFP antibody to determine their dimerization. FLAG-GR was co-precipitated with GFP-GR in the cytoplasmic fraction of COS-1 cells. Treatment with the GR agonist dexamethasone significantly decreased the cytoplasmic interaction between FLAG- and GFP-GR, and significantly increased interaction of the GRs in the nuclear fraction. The two amino acids, Pro625 and Ile628 known to be located in GR-GR dimer interface, were mutated to alanine and the influence of the mutation on dimerization, ligand-dependent nuclear localization, and transcriptional activities were determined. Mutant GR showed a dramatic decrease in interaction in the cytoplasmic fraction and no detectable nuclear translocation in the presence or absence of dexamethasone. Furthermore, luciferase assays showed that mutant GR showed no detectable transcriptional activation via the GR-responsive DNA element (GRE) compared to the wild-type. Our results suggest that GR exists as a dimer in the cytoplasm and this dimerization may be essential for GRE-mediated transcriptional activation following ligand binding.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2021.03.071DOI Listing

Publication Analysis

Top Keywords

glucocorticoid receptor
8
dimerization cytoplasm
8
nuclear localization
8
cytoplasmic fraction
8
transcriptional activation
8
dimerization
5
nuclear
5
receptor dimerization
4
cytoplasm essential
4
essential nuclear
4

Similar Publications

SLC7A11 encodes the glutamate-cystine exchanger xCT, which is a key regulator of intracellular antioxidant capacity and extracellular glutamate levels. We have identified SLC7A11 as a direct target of the glucocorticoid receptor (GR). The GR agonist dexamethasone represses SLC7A11 expression in multiple cell types, from epithelial cells to astrocytes.

View Article and Find Full Text PDF

Osteoporosis is an increasing concern in the aging population worldwide, culminating in increased economic concerns and diminished quality of life. Similarly, disturbances of lipid metabolism and adipocytes accumulate more and more in western societies and need solutions. Adipocytes have recently attracted much interest in relation to their endocrine products, one of which is adiponectin, normally associated with beneficial effects on cardiovascular health, inflammation, and cancer.

View Article and Find Full Text PDF

Activation of glucocorticoid receptors facilitates ex vivo high-frequency network oscillations in the anterior cingulate cortex.

Neuroscience

September 2025

Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.

Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.

View Article and Find Full Text PDF

The skin integrates diverse signals discerned by sensory neurons and immune cells to elicit adaptive responses to a range of stresses. Considering interactions between nervous and immune systems, we examined whether regulatory T (T) cells, which suppress systemic and local inflammation, can modulate activation of peripheral neurons. Acute T cell "loss of function" increased neuronal activation to noxious stimuli independently of their immunosuppressive function.

View Article and Find Full Text PDF

Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer mortality in females. Approximately 20-30% of patients with advanced breast cancer develop brain metastasis. Often, brain metastatic breast cancer (BMBC) exhibits a nonproliferative (dormant) phenotype and therapy resistance due to the unfavorable organ microenvironment.

View Article and Find Full Text PDF