98%
921
2 minutes
20
The effects of six polycyclic aromatic hydrocarbons (PAHs) on the activity of V79 cells were studied by using a miniature electrochemical system based on graphene oxide quantum dots and multiwall carbon nanotubes modified anodized screen printed carbon electrode. The cytotoxicity sequence of PAHs on V79 cells was different with guanine/xanthine (G/X), adenine (A), hypoxanthine (HX), and the end product of purine nucleotide catabolism, uric acid (UA), as biomarkers. The IC values measured with UA as the biomarker were the lowest, indicating that UA in cells was more sensitive to PAHs. The cytotoxicity sequence with G/X as the biomarker was the same as that of the MTT assay: pyrene > phenanthrene > benzo[a]pyrene > fluoranthene > fluorene > naphthalene. The cytotoxicity sequences measured by different biomarkers varied, which related to different structures that may influence the expression of the cellular aryl hydrocarbon receptor, gap junctional intercellular communication, and p53 protein. PAHs with different structures played varied roles in cell development and differentiation. Additionally, the electrochemical method was more sensitive than the MTT assay. The miniature electrochemical system enabled the simultaneous detection of four signals in cells, providing more information for multi-parameter evaluation and toxic mechanism study of PAHs and other pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-021-00560-5 | DOI Listing |
Anal Chem
September 2025
Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China.
Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.
View Article and Find Full Text PDFACS Omega
September 2025
Laboratory of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battuta, P.O. Box 1014, Rabat 10000, Morocco.
In this study, we describe the synthesis and characterization of the mononuclear complexes [ )], [ ], and [ ], where = (2-((2-hydroxybenzylidene)-amino)-phenol). The structural analysis of these complexes was carried out utilizing mass spectrometry, H NMR, C NMR, P NMR, UV-visible, and FT-IR. All three complexes were investigated as corrosion inhibitors for mild steel in 1 M HCl.
View Article and Find Full Text PDFCrit Rev Anal Chem
September 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, India.
The miniaturization of separation platforms marks a transformative shift in analytical science, merging microfabrication, automation, and intelligent data integration to meet rising demands for portability, sustainability, and precision. This review critically synthesizes recent technological advances reshaping the field-from microinjection and preconcentration modules to compact, high-sensitivity detection systems including ultraviolet-visible (UV/Vis), fluorescence (FL), electrochemical detection (ECD), and mass spectrometry (MS). The integration of microcontrollers, AI-enhanced calibration routines, and IoT-enabled feedback loops has led to the rise of self-regulating analytical devices capable of real-time decision-making and autonomous operation.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
Instituto de Química, Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil. Electronic address:
Background: The increasing prevalence of methicillin-resistant Staphylococcus aureus (MRSA), particularly due to the presence of the mecA gene, emphasizes the need for decentralized, rapid, and accurate molecular diagnostics. While qPCR remains the gold standard method, its dependence on expensive equipment and centralized labs limits accessibility in field or point-of-care (POC) settings. To address this limitation, we developed an Electrochemical Loop-Mediated Isothermal Amplification (E-LAMP) platform for rapid, low-cost, and highly sensitive detection of the mecA gene, using 3D-printed electrodes and a smartphone-controlled potentiostat.
View Article and Find Full Text PDFTalanta
August 2025
Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, Rome, Italy; Sense4Med srl, via Bitonto 139, Rome, Italy. Electronic address:
Studying chemical substances in Antarctic soils, such as zinc ions, provides crucial insight into ecosystem changes. Conventional analyses typically require laboratory-based instrumentation (e.g.
View Article and Find Full Text PDF