98%
921
2 minutes
20
Human enterprise has led to large-scale changes in landscapes and altered wildlife population distribution and abundance, necessitating efficient and effective conservation strategies for impacted species. Greater sage-grouse (; hereafter sage-grouse) are a widespread sagebrush ( spp.) obligate species that has experienced population declines since the mid-1900s resulting from habitat loss and expansion of anthropogenic features into sagebrush ecosystems. Habitat loss is especially evident in North Dakota, USA, on the northeastern fringe of sage-grouse' distribution, where a remnant population remains despite recent development of energy-related infrastructure. Resource managers in this region have determined a need to augment sage-grouse populations using translocation techniques that can be important management tools for countering species decline from range contraction. Although translocations are a common tool for wildlife management, very little research has evaluated habitat following translocation, to track individual behaviors such as habitat selection and fidelity to the release site, which can help inform habitat requirements to guide selection of future release sites. We provide an example where locations from previously released radio-marked sage-grouse are used in a resource selection function framework to evaluate habitat selection following translocation and identify areas of seasonal habitat to inform habitat management and potential restoration needs. We also evaluated possible changes in seasonal habitat since the late 1980s using spatial data provided by the Rangeland Analysis Platform coupled with resource selection modeling results. Our results serve as critical baseline information for habitat used by translocated individuals across life stages in this study area, and will inform future evaluations of population performance and potential for long-term recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7981223 | PMC |
http://dx.doi.org/10.1002/ece3.7228 | DOI Listing |
Ecol Evol
September 2025
MPG Ranch Florence Montana USA.
DNA fecal metabarcoding has revolutionized the field of herbivore diet analyses, offering deeper insight into plant-herbivore interactions and more reliable ecological inferences. However, due to PCR amplification bias, primer selection has a major impact on the validity of these inferences and insights. Using two pooling approaches on four mock communities and a case study examining diets of four large mammalian herbivores (LMH), we evaluated the efficacy of two primer pairs targeting the internal transcribed spacer 2 (ITS2) region: the widely used ITS-S2F/ITS4 pair and the UniPlant F/R pair, designed specifically for DNA metabarcoding.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Fruit Research Institute, Čačak, Serbia.
The Balkan Peninsula is a European biodiversity hotspot, home to 6,500 native vascular plant species, many of which are endemic. The region has diverse range of climates and complex topography, creating conditions that suit many woody ornamental, fruit, and forest species. Nevertheless, climate change, habitat destruction, invasive species, plant diseases, and agricultural practices threaten natural ecosystems and cultivated species.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
Key Laboratory of Intelligent Medical Imaging of Wenzhou, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Tumor deposits (TDs) are an important prognostic factor in rectal cancer. However, integrated models combining clinical, habitat radiomics, and deep learning (DL) features for preoperative TDs detection remain unexplored.
Purpose: To investigate fusion models based on MRI for preoperative TDs identification and prognosis in rectal cancer.
Genome Biol
September 2025
Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.
Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).
View Article and Find Full Text PDF