98%
921
2 minutes
20
The intestinal epithelium is a functional and physical barrier formed by a cell monolayer that constantly differentiates from a stem cell in the crypt. This is the first target for food contaminants, especially mycotoxins. Deoxynivalenol (DON) is one of the most prevalent mycotoxins. This study compared the effects of DON (0-100 μM) on proliferative and differentiated intestinal epithelial cells. Three cell viability assays (LDH release, ATP content and neutral red uptake) indicated that proliferative Caco-2 cells are more sensitive to DON than differentiated ones. The establishment of transepithelial electrical resistance (TEER), as a read out of the differentiation process, was delayed in proliferative cells after exposure to 1 μM DON. Transcriptome analysis of proliferative and differentiated exposure to 0-3 μM DON for 24 h revealed 4862 differentially expressed genes (DEG) and indicated an effect of both the differentiation status and the DON treatment. KEGG enrichment analysis indicated involvement of metabolism, ECM receptors and tight junctions in the differentiation process, while ribosome biogenesis, mRNA surveillance, and the MAPK pathway were involved in the response to DON. The number of differentially expressed genes and the amplitude of the effect were higher in proliferative cells exposed to DON than that in differentiated cells. In conclusion, our study shows that proliferative cells are more susceptible than differentiated ones to DON and that the mycotoxin delays the differentiation process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2021.116818 | DOI Listing |
Calcif Tissue Int
September 2025
FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.
X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li
Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.
View Article and Find Full Text PDFOpen Biol
September 2025
National Brain Research Centre, Manesar, Haryana, India.
E3 ubiquitin ligases regulate the cellular proteome proteasome-dependent protein degradation; however, there exist limited studies outlining their non-canonical functions. RNA-binding ubiquitin ligases (RBULs) represent a subset of E3 ligases that harbour RNA-binding domains, making them uniquely positioned to function as both RNA-binding proteins and E3 ligases. Our initial microarray screen for E3 ligases from mouse cortical neural progenitor cells identified MEX3B, a known RNA-binding ubiquitin ligase, to be differentially expressed.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2025
Instituto de Física, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:
Three antileishmanial compounds incorporating a butylated hydroxytoluene (BHT) moiety and an acrylate-based Michael acceptor scaffold were rationally designed from the lead structures LQFM064 and LQFM332, which feature a chalcone-derived core. Their activities against Leishmania (L.) amazonensis were evaluated.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
September 2025
Division of Pediatric Critical Care, Department of Pediatrics, University of California, San Francisco, USA.
Right ventricular (RV) failure is the primary cause of death among patients with pulmonary arterial hypertension (PAH). Patients with congenital heart disease-associated PAH (CHD-PAH) demonstrate improved outcomes compared to patients with other forms of PAH, which is related to the maintenance of an adaptively hypertrophied RV. In an ovine model of CHD-PAH, we aimed to elucidate the cellular, microvascular, and transcriptional adaptations to congenital pressure overload that support RV function.
View Article and Find Full Text PDF