Chimeric Antigen Receptor Design Today and Tomorrow.

Cancer J

From the Division of Clinical Science, Department of Blood & Marrow Transplant and Cellular Immunotherapy, H. Lee Moffitt Cancer Center.

Published: September 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The US Food and Drug Administration has approved 3 chimeric antigen receptor (CAR) T-cell therapies. For continued breakthroughs, novel CAR designs are needed. This includes different antigen-binding domains such as antigen-ligand binding partners and variable lymphocyte receptors. Another recent advancement in CAR design is Boolean logic gates that can minimize on-target, off-tumor toxicities. Recent studies on the optimization of costimulatory signaling have also shown how CAR design can impact function. By using specific signaling pathways and transcription factors, CARs can impact T-cell gene expression to enhance function. By using these techniques, the promise of CAR T-cell therapies for solid tumors can be fulfilled.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PPO.0000000000000514DOI Listing

Publication Analysis

Top Keywords

chimeric antigen
8
antigen receptor
8
car t-cell
8
t-cell therapies
8
car design
8
car
5
receptor design
4
design today
4
today tomorrow
4
tomorrow food
4

Similar Publications

Advances in NK cell therapy for multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China. Electronic address:

Multiple myeloma (MM) is a malignant disease in which clonal plasma cells proliferate abnormally. In patients with MM, the number and function of NK cells are suppressed, resulting in reduced immune surveillance and clearance of myeloma cells. Restoring or enhancing the killing effect of NK cells on myeloma cells is an important strategy for MM immunotherapy.

View Article and Find Full Text PDF

Adoptive cellular therapies in multiple myeloma.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address:

Plasma cell myeloma (multiple myeloma) is a blood cancer characterized by the clonal proliferation of plasma cells in the bone marrow. Treatment strategies evolve year by year, new drugs getting Food and Drug Administration (FDA)-approved each year. Chimeric antigen receptor (CAR) therapies are an advanced form of immunotherapy that engineer T cells to recognize and destroy cancer cells.

View Article and Find Full Text PDF

Adoptive cellular therapies in non-Hodgkin lymphomas.

Best Pract Res Clin Haematol

September 2025

Department of Personalized Medicine and Rare Diseases, Medfuture Institute for Biomedical Research - Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; Department of Hematology, Ion Chiricuta Cancer Center, Cluj Napoca, Romania. Electronic address: c

Lymphomas are a group of malignant proliferations of B, T or NK-lymphoid cells at different stages of maturation. While they primarily occur in lymph nodes or lymphatic tissues, they can also involve bone marrow, blood, or other organs. Despite advances in treatment, many patients experience relapse, or develop refractory disease, prompting the development of new therapies.

View Article and Find Full Text PDF

Mathematical model suggests current CAR-macrophage dosage is efficient to low pre-infusion tumour burden but refractory to high tumour burden.

J Theor Biol

September 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China. Electronic address:

Chimeric antigen receptor (CAR)-macrophage therapy is a promising approach for tumour treatment due to antigen-specific phagocytosis and tumour clearance. However, the precise impact of tumour burden, dose and dosing regimens on therapeutic outcomes remains poorly understood. We developed ordinary differential equation (ODE) mathematical modelling and utilised parameter inference to analyse in vitro FACS-based phagocytosis assay data testing CD19-positive Raji tumour cell against CAR-macrophage, and revealed that phagocytosing efficiency of CAR-macrophage increases but saturates as both Raji cell and CAR-macrophage concentrations increase.

View Article and Find Full Text PDF

In patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL) who are either refractory to first-line therapy or relapse within 12 months, chimeric antigen receptor (CAR) T-cell therapy is more effective than salvage chemotherapy followed by high-dose chemotherapy and autologous stem cell transplantation (ASCT) as second-line therapy. Adoption of CAR T-cell therapy into routine clinical practice involves a period of adaptation and refinement of clinical processes. We aimed to document the evolution of clinical processes for CAR T-cell therapy during 2022 and 2023, and compare healthcare resource utilization (HCRU) associated with CAR T-cell and ASCT processes in routine clinical practice.

View Article and Find Full Text PDF