A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Numerical analysis of the hemodynamics of rat aorta based on magnetic resonance imaging and fluid-structure interaction. | LitMetric

Numerical analysis of the hemodynamics of rat aorta based on magnetic resonance imaging and fluid-structure interaction.

Int J Numer Method Biomed Eng

Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Murine models have been widely used to investigate the mechanobiology of aortic atherosclerosis and dissections, which develop preferably at different anatomic locations of aorta. Based MRI and finite element analysis with fluid-structure interaction, we numerically investigated factors that may affect the blood flow and structural mechanics of rat aorta. The results indicated that aortic root motion greatly increases time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), relative residence time (RRT), displacement of the aorta, and enhances helical flow pattern but has limited influence on effective stress, which is highly modulated by blood pressure. Moreover, the influence of the motion component on these indicators is different with axial motion more obvious than planar motion. Surrounding fixation of the intercostal arteries and the branch vessels on aortic arch would reduce the influence of aortic root motion. The compliance of the aorta has different influences at different regions, leading to decrease in TAWSS and helical flow, increase in OSI, RRT at the aortic arch, but has reversed effects on the branch vessels. When compared with the steady flow, the pulsatile blood flow would obviously increase the WSS, the displacement, and the effective stress in most regions. In conclusion, to accurately quantify the blood flow and structural mechanics of rat aorta, the motion of the aortic root, the compliance of aortic wall, and the pulsation of blood flow should be considered. However, when only focusing on the effective stress in rat aorta, the motion of the aortic root may be neglected.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cnm.3457DOI Listing

Publication Analysis

Top Keywords

rat aorta
16
blood flow
16
aortic root
16
effective stress
12
aorta based
8
fluid-structure interaction
8
aortic
8
flow structural
8
structural mechanics
8
mechanics rat
8

Similar Publications