Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Estimating early exposure of drugs used for the treatment of emergent conditions is challenging because blood sampling to measure concentrations is difficult. The objective of this work was to evaluate predictive performance of two early concentrations and prior pharmacokinetic (PK) information for estimating early exposure. The performance of a modeling approach was compared with a noncompartmental analysis (NCA). A simulation study was performed using literature-based models for phenytoin (PHT), levetiracetam (LEV), and valproic acid (VPA). These models were used to simulate rich concentration-time profiles from 0 to 2 h. Profiles without residual unexplained variability (RUV) were used to obtain the true partial area under the curve (pAUC) until 2 h after the start of drug infusion. From the profiles with the RUV, two concentrations per patient were randomly selected. These concentrations were analyzed under a population model to obtain individual population PK (PopPK) pAUCs. The NCA pAUCs were calculated using a linear trapezoidal rule. Percent prediction errors (PPEs) for the PopPK pAUCs and NCA pAUCs were calculated. A PPE within ±20% of the true value was considered a success and the number of successes was obtained for 100 simulated datasets. For PHT, LEV, and VPA, respectively, the median value of the success statistics obtained using the PopPK approach of 81%, 92%, and 88% were significantly higher than the 72%, 80%, and 67% using the NCA approach (p < 0.05; Mann-Whitney U test). This study provides a means by which early exposure can be estimated with good precision from two concentrations and a PopPK approach. It can be applied to other settings in which early exposures are of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8301574PMC
http://dx.doi.org/10.1111/cts.13004DOI Listing

Publication Analysis

Top Keywords

simulation study
8
blood sampling
8
estimating early
8
early exposure
8
poppk paucs
8
paucs nca
8
nca paucs
8
paucs calculated
8
pharmacokinetic simulation
4
study assess
4

Similar Publications

Background: Identifying suspected anterior circulation large-vessel occlusion (aLVO) strokes during emergency calls could enhance dispatch efficiency, particularly in rural areas. However, data on emergency medical dispatchers' (EMDs) ability to recognize aLVO symptoms remain limited. This simulation study aimed to evaluate the feasibility of identifying side-specific arm paresis, side-specific conjugate eye deviation (CED), and aphasia during emergency calls by instructing layperson callers to perform brief, standardized examination steps.

View Article and Find Full Text PDF

Background: The increasing amount of data routinely collected on ICUs poses a challenge for clinicians which is aggravated with data-heavy therapies like Continuous Kidney Replacement Therapy (CKRT). We developed the CKRT Supporting Software Prototype (CKRT-SSP), a clinical decision support system for use before, during and after CKRT. The aim of this user experience (UX) study was to prospectively evaluate CKRT-SSP in terms of usability, user experience, and workload in a simulated ICU setting.

View Article and Find Full Text PDF

Impact of Flow Restrictors on Aerosol Delivery of the Respimat® Soft Mist Inhaler.

Pulm Ther

September 2025

Boehringer Ingelheim Pharma GmbH & Co. KG, Binger Straße 173, 55216, Ingelheim am Rhein, Germany.

Introduction: The modification of an inhaler's air flow resistance influences a patient's inhalation flow profile, thereby affecting the exit velocity of an aerosol leaving the Respimat® mouthpiece. A slower inhalation maneuver results in reduced plume velocity and thus a decreased oropharyngeal deposition due to reduced impaction. This could not only lead to fewer unwanted side effects associated with inhaled therapies, but also enhance lung deposition.

View Article and Find Full Text PDF

Introduction: This study explores high-impedance surface (HIS) metamaterial shields for enhancing the transmit field in whole-body MRI at 7 T. We studied the possibility of placing a metamaterial layer between the gradient coil and bore liner using electromagnetic simulations to evaluate B and SAR efficiency across different impedances.

Materials And Methods: Simulations were performed in three stages, first metamaterial design and characterization, then single-element dipole simulations with a homogenous phantom, and finally, simulations including a four-element arrays with a virtual body model, including the whole scanner geometry.

View Article and Find Full Text PDF

Objective: To improve B field homogeneity in prostate MR imaging and spectroscopy using a custom-designed 16-channel external local shim coil array.

Methods: In vivo prostate imaging was performed in seven healthy volunteers (mean age: 40.7 years) without bowel preparation.

View Article and Find Full Text PDF