The role of species introduction in modifying the functional diversity of native communities.

Sci Total Environ

Department of Life Sciences and Biotechnology, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy; LifeWatch Italia, Di.S.Te.B.A. - University of Salento, Ecotekne Center, via proviciale Lecce-Monteroni s.n., 73100 Lecce, Italy.

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Although one of the most evident effects of biological invasions is the loss of native taxonomic diversity, contrasting views exist on the consequences of biological invasions on native functional diversity. We investigated this topic using Mediterranean stream, river and canal fish communities as a test case, at 3734 sites in Italy, and distinguishing between exotic and translocated species invasion in three different faunal districts. Our results clearly confirmed that introduced species were widespread and in many cases the invasion was severe (130 communities were completely composed by introduced species). Exotic and translocated fish species had substantially different geographical distribution patterns, perhaps arising from their differences in introduction timing, spread and invasion mechanisms. We also found a clear decreasing trend of functional dispersion along an invasion gradient, confirming our hypothesis that the invasion process can diminish the relative diversity of ecofunctional traits of host fish communities. Furthermore, our results suggested that exotic species might have a greater negative effect than translocated species on the relative diversity of ecofunctional traits of fish communities. This could also be linked to the fact that translocated species are more ecofunctionally similar to native ones, compared to the exotics. Our multivariate analysis of site-specific combinations of ecofunctional traits highlighted some traits characteristic of all invaded communities, while our discriminant analysis underlined how there was a substantial ecofunctional overlap between native, exotic and translocated species groups in most areas.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134364DOI Listing

Publication Analysis

Top Keywords

translocated species
16
fish communities
12
exotic translocated
12
ecofunctional traits
12
functional diversity
8
biological invasions
8
species
8
introduced species
8
relative diversity
8
diversity ecofunctional
8

Similar Publications

The small GTPase Rho5-Yet another player in yeast glucose signaling.

PLoS Genet

September 2025

Department of Biology/Chemistry, Division of Genetics, University of Osnabrück, Barbarastrasse, Osnabrück, Germany.

The small GTPase Rho5 has been shown to be involved in regulating the Baker's yeast response to stress on the cell wall, high medium osmolarity, and reactive oxygen species. These stress conditions trigger a rapid translocation of Rho5 and its dimeric GDP/GTP exchange factor (GEF) to the mitochondrial surface, which was also observed upon glucose starvation. We here show that rho5 deletions affect carbohydrate metabolism both at the transcriptomic and the proteomic level, in addition to cell wall and mitochondrial composition.

View Article and Find Full Text PDF

Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.

View Article and Find Full Text PDF

Excessive gestational weight gain (GWG) is associated with various adverse pregnancy outcomes, including disruption of placental function and fetal development. Iron transport through the placenta is crucial for fetal growth, and transferrin receptor 2 (TfR2) plays a key role in iron homeostasis. However, the effect of excessive GWG on placental TfR2 expression and neonatal iron parameters remains unclear.

View Article and Find Full Text PDF

The effect of mixed potable and wastewater (WW) irrigation on leafy vegetables cultivated in southern Tehran, Iran, was investigated in 2022. Eight species-spinach (Spinacia oleracea), scallion (Allium fistulosum), radish (Raphanus sativus), cress (Lepidium sativum), basil (Ocimum basilicum), purslane (Portulaca oleracea), cilantro (Coriandrum sativum), and savory (Satureja hortensis)-were grown in calcareous loamy soil under greenhouse conditions using five irrigation regimes (0%, 25%, 50%, 75%, and 100% WW) applied every 2 days. Soil salinity, DTPA-extractable Co, Cu, Ni, and Zn, plant growth traits, and health risk indices-transfer factor (TF), bioaccumulation factor (BAF), average daily dietary intake (ADD), hazard quotient (HQ), and cancer risk (CR)-were determined for children and adults.

View Article and Find Full Text PDF

Antimony (Sb) and arsenic (As) are homologous elements that pose significant threats to the ecological security of soil-crop systems and the health of agricultural products due to their co-contamination. Although they share similarities in plant uptake and translocation, significant knowledge gaps remain regarding the uptake mechanisms of Sb, especially Sb(V), and its interactions with As. This review systematically summarizes the sources, chemical speciation, and bioavailability-regulating factors (e.

View Article and Find Full Text PDF