98%
921
2 minutes
20
The factors regulating cellular identity are critical for understanding the transition from health to disease and responses to therapies. Recent literature suggests that autophagy compromise may cause opposite effects in different contexts by either activating or inhibiting YAP/TAZ co-transcriptional regulators of the Hippo pathway via unrelated mechanisms. Here, we confirm that autophagy perturbation in different cell types can cause opposite responses in growth-promoting oncogenic YAP/TAZ transcriptional signalling. These apparently contradictory responses can be resolved by a feedback loop where autophagy negatively regulates the levels of α-catenins, LC3-interacting proteins that inhibit YAP/TAZ, which, in turn, positively regulate autophagy. High basal levels of α-catenins enable autophagy induction to positively regulate YAP/TAZ, while low α-catenins cause YAP/TAZ activation upon autophagy inhibition. These data reveal how feedback loops enable post-transcriptional determination of cell identity and how levels of a single intermediary protein can dictate the direction of response to external or internal perturbations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969950 | PMC |
http://dx.doi.org/10.1038/s41467-021-21882-1 | DOI Listing |
Front Cell Dev Biol
August 2025
Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases IRCCS "L. Spallanzani", Rome, Italy.
The human microbiota is composed of a complex community of microorganisms essential for maintaining host homeostasis, especially in the gastrointestinal tract. Emerging evidence suggests that dysbiosis is linked to various cancers, including colorectal cancer (CRC). The microbiota contributes to CRC development and progression by influencing inflammation, genotoxic stress, and key cell growth, proliferation, and differentiation pathways.
View Article and Find Full Text PDFAutophagy Rep
September 2025
Division of Neurosciences & Cellular Structure, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
The autophagy-related protein ATG9A is integral to cellular autophagy and lipid mobilization, yet its importance in mammalian physiology remains underexplored. Using a liver-specific conditional knockout (-cKO) mouse model, we uncovered critical insights into the physiological function of ATG9A in this organ. -cKO mice exhibited hepatomegaly, abnormal hepatocyte morphology, mitochondrial fragmentation, and lipid droplet accumulation.
View Article and Find Full Text PDFFish Shellfish Immunol
September 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR C
High-temperature (HT) is a critical influencing factor in shrimp aquaculture and serves as a key trigger for frequent disease outbreaks in shrimp. As a core organ for digestion, absorption and immune defense, the intestine's functional homeostasis is the key foundation for shrimp health. Therefore, in this study, the shrimp Litopenaeus vannamei were continuously exposed to HT stress at 33 °C for 7 days, after which the changes in intestinal functional homeostasis were investigated based on the mucosal integrity, immune signaling, and microbial community.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang 464000, China.
Cadmium (Cd), a pervasive environmental and industrial toxicant, bioaccumulates and exerts severe detrimental effects on skeletal integrity across diverse animal species. Cd-induced bone injury manifests as osteoporosis, osteomalacia, and increased fracture risk, posing significant health and welfare concerns for wildlife and livestock inhabiting contaminated ecosystems. The pathogenesis hinges critically on the disruption of bone remodeling, a tightly regulated process orchestrated by osteoclasts (OCs) responsible for bone resorption and osteoblasts (OBs) responsible for bone formation.
View Article and Find Full Text PDFCell Signal
September 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Thiram, an environmentally persistent pesticide, poses significant hepatotoxic risks through oral exposure. However, the mechanisms linking gut dysbiosis to hepatic cell death remain unclear. Using a 5-week thiram exposure mouse model, we demonstrate that thiram-induced gut microbiota dysbiosis amplifies hepatotoxicity by disrupting the mitochondrial-autophagy-apoptosis axis via the gut-liver axis.
View Article and Find Full Text PDF