98%
921
2 minutes
20
Malignant characteristics of cancers, represented by rapid cell proliferation and high metastatic potential, are a major cause of high cancer-related mortality. As a multifunctional RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK) is closely associated with cancer progression in various types of cancers. In this study, we sought to identify hnRNPK-regulated long intergenic non-coding RNAs (lincRNAs) that play a critical role in the regulation of cancer malignancy. We found that hnRNPK controlled malignant phenotypes including invasiveness, proliferation, and clonogenicity. RNA sequencing and functional studies revealed that LINC00263, a novel target of hnRNPK, is involved in the oncogenic functions of hnRNPK. Knockdown of LINC00263 mitigated the malignant capabilities. Conversely, increased malignant phenotypes were observed in LINC00263-overexpressing cells. Since LINC00263 was mainly localized in the cytosol and highly enriched in Argonaute 2-immunoprecipitation (Ago2-IP), we hypothesized that LINC00263 acts as a competitive endogenous RNA (ceRNA), and thus sought to identify LINC00263-associated microRNAs. Using small RNA sequencing followed by antisense oligonucleotide pull-down, miR-147a was selected for further study. We found that miR-147a negatively regulates LINC00263 via direct interaction, thus suppressing malignant capabilities. Moreover, knockdown of hnRNPK and LINC00263 upregulated miR-147a, indicating that LINC00263 serves as a ceRNA for miR-147a. By analyzing RNA sequencing data and miRNA target prediction, calpain 2 (CAPN2) was identified as a putative target of miR-147a. Ago2-IP and luciferase reporter assay revealed that miR-147a suppressed CAPN2 expression by directly binding to the 3'UTR of CAPN2 mRNA. In addition, we found that the weakened malignant capabilities following knockdown of hnRNPK or LINC00263 were restored by miR-147a inhibition or CAPN2 overexpression. Furthermore, our findings were validated in various other types of cancer cells including lung cancer, colorectal cancer, neuroblastoma, and melanoma. Collectively, we demonstrate that hnRNPK-regulated LINC00263 plays an important role in cancer malignancy by acting as a miR-147a decoy and thus upregulating CAPN2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7969774 | PMC |
http://dx.doi.org/10.1038/s41419-021-03575-1 | DOI Listing |
J Clin Invest
September 2025
Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Boston, United States of America.
B-lymphocytes play major adaptive immune roles, producing antibody and driving T-cell responses. However, how immunometabolism networks support B-cell activation and differentiation in response to distinct receptor stimuli remains incompletely understood. To gain insights, we systematically investigated acute primary human B-cell transcriptional, translational and metabolomic responses to B-cell receptor (BCR), Toll-like receptor 9 (TLR9), CD40-ligand (CD40L), interleukin-4 (IL4) or combinations thereof.
View Article and Find Full Text PDFJ Neurooncol
September 2025
Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
Purpose: NOTCH3 is increasingly implicated for its oncogenic role in many malignancies, including meningiomas. While prior work has linked NOTCH3 expression to higher-grade meningiomas and treatment resistance, the metabolic phenotype of NOTCH3 activation remains unexplored in meningioma.
Methods: We performed single-cell RNA sequencing on NOTCH3 + human meningioma cell lines.
J Pathol
September 2025
Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR), and HER2, and remains one of the most aggressive and therapeutically challenging breast cancer subtypes, marked by early relapse, metastasis, and limited targeted treatment options. In a recent study published in The Journal of Pathology, Kuo et al provide compelling evidence that nicotine exposure, whether from tobacco smoke or e-cigarette vapor, drives TNBC progression by promoting stem-like and metastatic phenotypes. Integrating clinical datasets, patient tissues, cell lines, and in vivo models, the authors demonstrate that nicotine enhances tumor aggressiveness via coordinated upregulation of CHRNA9 and IGF1R.
View Article and Find Full Text PDFDis Colon Rectum
September 2025
Department of Surgery, Oregon Health & Science University, Portland, Oregon.
Background: Anal squamous cell cancer incidence has risen 2.2% each year over the past decade. Current screening includes anal cytology and high-resolution anoscopy but is burdened with sampling error and patient discomfort.
View Article and Find Full Text PDFBioimpacts
August 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
Introduction: Hepatocellular carcinoma (HCC) remains a major cause of cancer mortality, and effective therapeutic options are limited. MicroRNA‑372‑3p (miR‑372‑3p) has been implicated in HCC, yet its exact role is unclear.
Methods: We established miR‑372‑3p‑overexpressing HCC cell lines (HepG2, SNU‑449, JHH‑4) via lentiviral transduction.