Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Capsids of several RNA viruses are reported to have unconventional roles attributed to their subcellular trafficking property. The capsid of CHIKV is also found to localize in the nucleus, but the rationale is not yet clear. To understand the role of the nuclear-localized capsid, we examined the nucleic acid binding and cargo delivery activity of the CHIKV capsid. We used bacterially purified capsid protein to probe the binding affinity with CHIKV genome-specific and non-specific nucleic acids. We found that the capsid was able to bind non-specifically to different forms of nucleic acids. The successful transfection of GFP-tagged plasmid DNA by CHIKV capsid protein shows the DNA delivery ability of the protein. Further, we selected and investigated the DNA binding and cargo delivery activity of commercially synthesized Nuclear Localization Signal sequences (NLS 1 and NLS2) of capsid protein. Both peptides showed comparable DNA binding affinity, however, only the NLS1 peptide was capable of delivering plasmid DNA inside the cell. Furthermore, the cellular uptake study using the FITC-labelled NLS1 peptide was performed to highlight the membrane penetrating ability. Structural analysis was performed using circular dichroism and NMR spectroscopy to elucidate the transfection ability of the NLS1 peptides. Our findings suggest that the capsid of CHIKV might influence cellular trafficking in the infected cell via non-specific interactions. Our study also indicates the significance of NLS sequences in the multifunctionality of CHIKV capsid protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2021.108822DOI Listing

Publication Analysis

Top Keywords

capsid protein
20
chikv capsid
12
capsid
10
nuclear localization
8
dna delivery
8
capsid chikv
8
binding cargo
8
cargo delivery
8
delivery activity
8
binding affinity
8

Similar Publications

Background: Enteroviruses, including Coxsackie B (CVB) viruses, can cause severe diseases such as myocarditis, pancreatitis, and meningitis. Vaccines can prevent these complications, but conserved non-neutralizing epitopes in the viral capsid may limit their effectiveness. The immunodominant PALXAXETG motif, located in the VP1 N-terminus, is a highly conserved region in enteroviruses that elicits non-neutralizing antibody responses.

View Article and Find Full Text PDF

Vientovirus capsid protein mimics autoantigens and contributes to autoimmunity in Sjögren's disease.

Nat Microbiol

September 2025

Department of Rheumatology and Clinical Immunology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Viral infections are implicated in the pathogenesis of autoimmune diseases, including Sjögren's disease (SjD), but the mechanisms linking viral antigens to disease development remain poorly understood. To address this, we conducted shotgun metagenomic sequencing of saliva samples from 35 patients with SjD and 25 healthy controls. The salivary virome of the patients with SjD, particularly those with high disease activity, had an expansion of Siphoviridae bacteriophages and increased eukaryotic viral sequences, including Vientovirus.

View Article and Find Full Text PDF

EcSnx27 facilitates in vitro release of Singapore grouper iridovirus and interacts with its major capsid protein.

Dev Comp Immunol

September 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.

Sorting nexin 27 (Snx27), a member of the sorting nexin (SNX) family, plays crucial roles in cell signaling, organelle motility, protein sorting and membrane remodeling/trafficking. While existing studies have focused on the functions of SNXs in mammalian viral diseases and immune regulation, little is known about fish-encoded SNXs, particularly their regulatory roles in aquatic virus infection. In this study, we characterized the Snx27 from the orange-spotted grouper (Epinephelus coioides) and found that it facilitates the in vitro release of Singapore grouper iridovirus (SGIV), as evidenced by the detection of viable virions in the culture supernatants of SGIV-infected grouper spleen (GS) cells.

View Article and Find Full Text PDF

Development and implementation of an LC-MS-based multi-attribute method for adeno-associated virus.

Mol Ther Methods Clin Dev

September 2025

Pfizer Inc., Analytical Research and Development, 875 Chesterfield Pkwy. West, Chesterfield, MO 63017, USA.

The multi-attribute method (MAM), a mass spectrometry technique for quantifying amino acid modifications at the peptide level, is becoming a prominent analytical tool in the development of biotherapeutics. The method has promise for adeno-associated virus (AAV) therapeutics, where capsid protein modifications have been directly linked to reduced transduction efficiency. Given this link, a robust and precise procedure to quantitate capsid modifications would be beneficial for implementation throughout biotherapeutic development.

View Article and Find Full Text PDF

Accurate quantification and characterization of recombinant adeno-associated virus (rAAV) capsid proteins are critical for evaluating product quality and safety, ensuring batch consistency, and informing process development of their manufacture. The capsid consists of three proteins derived from the same gene, and while the mean capsid stoichiometry is nominally 1:1:10 (VP1:VP2:VP3), capsids with different stoichiometries exist. Recent studies show that variations in the capsid stoichiometry can impact vector infectivity.

View Article and Find Full Text PDF