Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Light or low frequency magnetic field (LF-MF) as one of the cultivation environments affects secondary metabolites (SMs) production of M. purpureus. Phytochrome (Phy) is a hybrid histidine kinase possessing dual properties of photoreceptor and kinase to sense red and far-red light. The interaction effects of LF-MF and light on SMs of M. purpureus was investigated by knocking out the Phy-like gene in M. purpureus (MpPhy) by homologous recombination. A MpPhy-deletion (ΔMpPhy) strain produced less Monascus pigments (MPs) and monacolin K (mon K) than the wild-type (WT) strain and reduced citrinin production by 78.3% on 10th day but didn't affect the biomass. These results indicated that the MpPhy gene is involved in SMs biosynthesis of M. purpureus. MPs production in WT was decreased significantly when the inoculum was exposed to white/blue/green/red light (500 Lux). But it in ΔMpPhy was no significant difference when exposed to white/red light. The colony size of ΔMpPhy was smaller on potato dextrose agar media containing 0.01% SDS. These results indicated that the deletion of MpPhy gene affected the aerial hyphae and increased sensitivity to cell membrane stress but decreased sensitivity to red light. The inoculum of both WT and ΔMpPhy was exposure to the LF-MF (50 Hz). The accumulation of WT secondary metabolites was not changed, while SMs production of ΔMpPhy was significantly enhanced under exposed to 2.0 mT LF-MF. This indicated that the decrease of SMs caused by the deletion of MpPhy gene was restored by LF-MF. It revealed that there is a crosstalk between magnetoreception and photosensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2021.112164DOI Listing

Publication Analysis

Top Keywords

secondary metabolites
12
mpphy gene
12
magnetoreception photosensitivity
8
sms production
8
deletion mpphy
8
light
6
mpphy
5
purpureus
5
lf-mf
5
sms
5

Similar Publications

Biodiversity to Breakthroughs: The Promise of Saudi Arabian Medicinal Plants in Antiviral Research.

Appl Biochem Biotechnol

September 2025

Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia.

Viruses are minuscule entities that cannot survive independently without a Living host. Pathogenic viruses pose a significant threat to global health, resulting annually in the deaths of thousands of people. Recent studies indicate that medicinal plants may serve as an effective source of sustainable natural antiviral agents.

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

OsSTK-Mediated Sakuranetin Biosynthesis and Carbon Flux Orchestrate Growth and Defence in Rice.

Plant Biotechnol J

September 2025

State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Plants balance resource energy allocation between growth and immunity to ensure survival and reproduction under limited availability. This study reveals that rice cultivars with elevated sucrose levels boost resistance to the fungal pathogen Magnaporthe oryzae by accumulating the phytoalexin sakuranetin, regulated by the transcription factor STOREKEEPER (OsSTK). OsSTK binds to the promoter region of OsNOMT (Naringenin-7-O-Methyltransferase) to drive sakuranetin biosynthesis.

View Article and Find Full Text PDF

Phytophthora root rot caused by the hemibiotrophic oomycete, is a major biotic hindrance in meeting the ever-increasing demand for avocados. In addition, the pathogen is a global menace to agriculture, horticulture and forestry. Phosphite trunk injections and foliar sprays remain the most effective chemical management strategy used in commercial avocado orchards against the pathogen.

View Article and Find Full Text PDF

Bioactive Furan Derivatives from Streptomyces sp. VITGV100: Insights from in silico Docking and ADMET Profiling.

Curr Drug Discov Technol

September 2025

School of BioSciences and Technology, Vellore Institute of Technology, VIT University, Vellore, Tamil Nadu, India.

Introduction: Streptomyces species have complex genomes, including various biosynthetic gene clusters, frequently responsible for producing antibacterial and bioactive secondary metabolites under certain environmental conditions. To assess the impact of Magnesium and Iron on Streptomyces sp. VITGV100 secondary metabolite production and bioactivity, including molecular docking studies to predict their therapeutic potential.

View Article and Find Full Text PDF