Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mixotrophy combines autotrophy and phagotrophy in the same cell. However, it is not known to what extent the phagotrophy influences metabolism, cell composition, and growth. In this work, we assess, on the one hand (first test), the role of phagotrophy on the elemental and biochemical composition, cell metabolism, and enzymes related to C, N, and S metabolism of Isochrysis galbana Parke, 1949. On the other hand, we study how a predicted increase of phagotrophy under environmental conditions of low nutrients (second test) and low light (third test) can affect its metabolism and growth. Our results for the first test revealed that bacterivory increased the phosphorous and iron content per cell, accelerating cell division and improving the cell fitness; in addition, the stimulation of some C and N enzymatic routes help to maintain, to some degree, compositional homeostasis. Under nutrient or light scarcity, I. galbana grew more slowly despite greater bacterial consumption, and the activities of key enzymes involved in C, N, and S metabolism changed according to a predominantly phototrophic strategy of nutrition in this alga. Contrary to recent studies, the stimulation of phagotrophy under low nutrient and low irradiance did not imply greater and more efficient C flux.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-021-01723-wDOI Listing

Publication Analysis

Top Keywords

low nutrients
8
low light
8
isochrysis galbana
8
low
6
cell
6
phagotrophy
5
metabolism
5
regulation phagotrophy
4
phagotrophy prey
4
prey low
4

Similar Publications

Desert plant communities play an irreplaceable role in maintaining the ecological balance of arid areas. Understanding the spatial distribution pattern of desert plant diversity and its environmental response mechanism is particularly important for the protection of regional biodiversity, and combining phylogenetic information can provide more in-depth insights. To this end, this study conducted a survey of desert plant communities along the southeast to northwest direction of the Hexi Corridor, revealing the variation patterns of species and phylogenetic diversity (PD) indicators along longitude, latitude, and altitude, and explored the driving factors of these patterns in combination with geographical, climatic, and soil factors.

View Article and Find Full Text PDF

The objectives of this experiment were to evaluate the effects of forage sorghum silage harvest settings, combining cut height, onboard sorghum kernel processor (KP) technology, and ensiling duration, on berry processing score (BPS) and ruminal in situ starch disappearance at 7 h (isSD7). Three harvest settings were tested: a 20-cm cut height, with and without KP (Low+KP, Low-noKP), and a 120-cm cut height with KP (High+KP). A commercial sorghum field was divided into 9 squares, with 3 squares randomly selected as blocks.

View Article and Find Full Text PDF

Barley is the main raw material for the production of malted beverages. However, it is an important source of food that is gaining attention due to its composition and numerous health benefits. Considering the emerging trend in the development of functional foods, this study used bibliometric analysis to assess the cumulative literature on the impact of drying, storage, and industrial processing (which are crucial for the development of functional foods) on the nutritional value of barley.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.

View Article and Find Full Text PDF