98%
921
2 minutes
20
Sodium metal is regarded as one of the most prospective next-generation anodes material owing to its high theoretical capacity, low redox potential, low cost, and natural abundance. Its most notable problem is the dendrite growth during Na plating/striping, which causes not only the safety concern but also the generation of inactive Na. Here, it is demonstrated that 2D carbon nanosheets embedded by bismuth nanoparticles (NPs) (denoted as Bi⊂CNs) serve as a robust nucleation buffer layer to endow the sodium metal anodes (SMAs) with high Coulombic efficiencies (CEs) and dendrite-free deposition during long-term cycling. The embedded Bi nanoparticles significantly reduce the nucleation barrier through the "sodiophilic" Na-Bi alloy. Meanwhile, the carbon frameworks effectively circumvent the gradual failure of those Na-Bi nucleation sites. As a result, the metallic Na on the Bi⊂CNs nucleation layer is repeatedly plated/stripped for nearly 7700 h (1287 cycles) at 3 mA h cm with an average CE of 99.92%. Moreover, the Na||Na symmetric cells with the Bi⊂CNs buffer layer are stably plated/stripped for 4000 h at 1 mA cm and 1 mA h cm . It is found that the cycling stability is closely related to the Na utilization of SMAs and current rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202007578 | DOI Listing |
Background: Malaria is one of the most infectious diseases, and electrolyte imbalance and mineral disturbances are common clinical manifestations. This study aimed to explore the effect of malaria on biochemical parameters in Sudanese patients with severe falciparum malaria.
Methods: A case-control study was conducted in the clinical laboratory of the Kosti Teaching Hospital between August 2022 and January 2023.
Top Magn Reson Imaging
October 2025
BIOSPACE LAB, Nesles-la-Vallée, France.
Aims: Cardiac tumors are aggressive and asymptomatic in early stages, causing late diagnosis and locoregional metastasis. Currently, the standard of care uses gadolinium-based contrast agents for MRI, and the associated hypersensitivity reactions are a significant concern, such as gadolinium deposition disease. In addition, the proximity of cardiac lesions closer to vital structures complicates surgical interventions.
View Article and Find Full Text PDFG Ital Nefrol
August 2025
Unit of Nephrology and Dialysis, Department of Medicine and Surgery, University of Enna "Kore", 94100, Enna, Italy.
Hyperkalemia is a common and serious complication in dialysis patients, with increased incidence and severity over time. Newer potassium binders, patiromer and sodium zirconium cyclosilicate (SZC), offer improved tolerability compared to older agents. This meta-analysis aims to evaluate the efficacy and safety of these newer binders in dialysis patients.
View Article and Find Full Text PDFEnviron Res
September 2025
School of Resources and Safety Engineering, University of Science and Technology Beijing, Beijing 100083, China; Key Laboratory of Safe and Green Mining of Metal Mines with Cemented Paste Backfill, National Mine Safety Administration, University of Science and Technology Beijing, Beijing 100083, Chi
Cemented paste backfill has made outstanding contributions to the large-scale consumption of phosphogypsum (PG), but poor water resistance significantly weakens the mechanical strength, promotes the leaching of total soluble phosphate (TP) and fluoride ions (F), and reduces its attractiveness in mine engineering. This research synthesized a curing agent (CA) using sodium methylsilicate, sodium silicate, and polyaluminum chloride (PAC). PG produced from Deyang Haohua Qingping Phosphate Mine Co.
View Article and Find Full Text PDFACS Nano
September 2025
Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
Transition metal chalcogenides (TMCs) have garnered significant attention as high-capacity anode materials, yet the unconventional role of the Cu collector meditating atomic-level substitution of metal-site cations by Cu ions during electrochemical cycling remains mechanistically unclear. To address this, herein, Cu-doped MoSe@C ultrathin nanosheets were synthesized via the solvothermal process and carbonization strategies. A systematic investigation was conducted to elucidate the underlying driving forces for Cu substitution at Mo sites and the crucial regulatory effects of solid electrolyte interphase (SEI) formation.
View Article and Find Full Text PDF