Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Tacrolimus (TAC) is an immunosuppressant widely prescribed following an allogenic organ transplant. Due to wide interindividual pharmacokinetic (PK) variability, optimizing TAC dosing based on genetic factors is required to minimize nephrotoxicity and acute rejections.

Methods: We enrolled 1133 participants receiving TAC from 4 cohorts, consisting of 3 with kidney transplant recipients and 1 with healthy males from clinical trials. The effects of clinical factors were estimated to appropriately control confounding variables. A genome-wide association study, haplotype analysis, and a gene-based association test were conducted using the Korea Biobank Array or targeted sequencing for 114 pharmacogenes.

Results: Genome-wide association study verified that CYP3A5*3 is the only common variant associated with TAC PK variability in Koreans. We detected several CYP3A5 and CYP3A4 rare variants that could potentially affect TAC metabolism. The haplotype structure of CYP3A5 stratified by CYP3A5*3 was a significant factor for CYP3A5 rare variant interpretation. CYP3A4 rare variant carriers among CYP3A5 intermediate metabolizers displayed higher TAC trough levels. Gene-based association tests in the 61 absorption, distribution, metabolism, and excretion genes revealed that CYP1A1 are associated with additional TAC PK variability: CYP1A1 rare variant carriers among CYP3A5 poor metabolizers showed lower TAC trough levels than the noncarrier controls.

Conclusions: Our study demonstrates that rare variant profiling of CYP3A5 and CYP3A4, combined with the haplotype structures of CYP3A locus, provide additive value for personalized TAC dosing. We also identified a novel association between CYP1A1 rare variants and TAC PK variability in the CYP3A5 nonexpressers that needs to be further investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1097/TP.0000000000003660DOI Listing

Publication Analysis

Top Keywords

rare variant
16
tac variability
12
tac
10
cyp3a locus
8
tac dosing
8
genome-wide association
8
association study
8
gene-based association
8
cyp3a5 cyp3a4
8
cyp3a4 rare
8

Similar Publications

Whole genome sequence analysis of low-density lipoprotein cholesterol across 246 K individuals.

Genome Biol

September 2025

Center for Genomic Medicine, Cardiovascular Research Center, , Massachusetts General Hospital Simches Research Center, 185 Cambridge Street, CPZN 5.238,, Boston, MA, 02114, USA.

Background: Rare genetic variation provided by whole genome sequence datasets has been relatively less explored for its contributions to human traits. Meta-analysis of sequencing data offers advantages by integrating larger sample sizes from diverse cohorts, thereby increasing the likelihood of discovering novel insights into complex traits. Furthermore, emerging methods in genome-wide rare variant association testing further improve power and interpretability.

View Article and Find Full Text PDF

X-Linked Hypophosphatemia: Role of Fibroblast Growth Factor 23 on Human Skeletal Muscle-Derived Cells.

Calcif Tissue Int

September 2025

FirmoLab, Fondazione F.I.R.M.O. Onlus and Stabilimento Chimico Farmaceutico Militare (SCFM), 50141, Florence, Italy.

X-linked hypophosphatemia (XLH) is a rare and progressive disease, due to inactivating mutations in the phosphate-regulating endopeptidase homolog X-linked (PHEX) gene. These pathogenic variants result in elevated circulating levels of fibroblast growth factor 23 (FGF23), responsible for the main clinical manifestations of XLH, such as hypophosphatemia, skeletal deformities, and mineralization defects. However, XLH also involves muscular disorders (muscle weakness, pain, reduced muscle density, peak strength, and power).

View Article and Find Full Text PDF

Personalised genomic strategies improve diagnostic yield in inherited retinal dystrophies: a stepwise, patient-centred approach.

Eye (Lond)

September 2025

Genetics Laboratory, Metropolitan South Clinical Laboratory, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.

Background: Inherited retinal dystrophies (IRDs) are a genetically heterogeneous group of conditions, with approximately 40% of cases remaining unresolved after initial genetic testing. This study aimed to assess the impact of a personalised genomic approach integrating whole-exome sequencing (WES) reanalysis, whole-genome sequencing (WGS), customised gene panels and functional assays to improve diagnostic yield in unresolved cases.

Subjects/methods: We retrospectively reviewed a cohort of 597 individuals with IRDs, including 525 probands and 72 affected relatives.

View Article and Find Full Text PDF

ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.

View Article and Find Full Text PDF

Availability of benign missense variant "truthsets" for validation of functional assays: Current status and a systematic approach.

Am J Hum Genet

September 2025

Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:

Multiplex assays of variant effect (MAVEs) provide promising new sources of functional evidence, potentially empowering improved classification of germline genomic variants, particularly rare missense variants, which are commonly assigned as variants of uncertain significance (VUSs). However, paradoxically, quantification of clinically applicable evidence strengths for MAVEs requires construction of "truthsets" comprising missense variants already robustly classified as pathogenic and benign. In this study, we demonstrate how benign truthset size is the primary driver of applicable functional evidence toward pathogenicity (PS3).

View Article and Find Full Text PDF