Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lithium-ion batteries with conventional LiPF carbonate electrolytes are prone to failure at high temperature. In this work, the thermal stability of a dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium difluoro(oxalato)borate (LiODFB) in carbonate solvents was analyzed by accelerated rate calorimetry (ARC) and differential scanning calorimetry (DSC). LiTFSI-LiODFB dual-salt carbonate electrolyte decomposed when the temperature exceeded 138.5 °C in the DSC test and decomposed at 271.0 °C in the ARC test. The former is the onset decomposition temperature of the solvents in the electrolyte, and the latter is the LiTFSI-LiODFB dual salts. Flynn-Wall-Ozawa, Starink, and autocatalytic models were applied to determine pyrolysis kinetic parameters. The average apparent activation energy of the dual-salt electrolyte was 53.25 kJ/mol. According to the various model fitting, the thermal decomposition process of the dual-salt electrolyte followed the autocatalytic model. The results showed that the LiTFSI-LiODFB dual-salt electrolyte is significantly better than the LiPF electrolyte in terms of thermal stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7956355 | PMC |
http://dx.doi.org/10.3390/polym13050707 | DOI Listing |