98%
921
2 minutes
20
Objectives: Although choline is essential for brain development and neural function, the effect of choline on retina function is not well understood. This study examined the effects of choline on neural tissues of brain and retina, and membrane phospholipid (PL) composition during fetal development.
Methods: Pregnant C57BL/6 mice were fed one of 4 choline modified diets: i) control (Cont, 2.5g/kg), ii) choline deficient (Def, 0g/kg), iii) supplemented with choline chloride (Cho, 10g/kg) and iv) supplemented with egg phosphatidylcholine (PC, 10g/kg). At postnatal day (PD) 21, pups were weaned onto their mothers' respective diets until PD 45. Spatial memory was measured using the Morris Water Maze; retina function by electroretinogram (ERG); and PL composition with nuclear magnetic resonance spectroscopy.
Results: Cho and PC supplementation enhanced cued learning and spatial memory abilities, respectively (p Def > PC > Cho, with no statistically significant alterations in cone-driven responses. There were no differences in the composition of major PLs in the brain and retina. In the brain, subclasses of ether PL, alkyl acyl- phosphatidylethanolamine (PEaa) and phosphatidylcholine (PCaa) were significantly greater among the PC supplemented group in comparison to the Def group.
Discussion: These results indicate that while choline supplementation during gestation to an early developmental period is beneficial for spatial memory, contributions to retina function are minor. Assessment with a larger sample size of retinas could warrant the essentiality of choline for retina development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1028415X.2021.1885229 | DOI Listing |
Biol Proced Online
September 2025
Division of Surface Physics, Department of Physics and Earth System Sciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
Background: Organotypic long-term cultivation of vascularized retina explants is a major challenge for application in drug development, drug screening, diagnostics and future personalized medicine. With this background, an assay and protocol for organotypic culture of vascularized retina explants in vitro with optimum tissue integrity preservation is developed and demonstrated.
Methods: Morphological, histologic and biochemical integrity as well as viability of vascularized retina explants are compared as function of cultivation time for differently structured nanotube scaffolds.
Nat Commun
September 2025
Shanghai Yao Yuan Biotechnology Ltd (Drug Farm), Shanghai, China.
ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome is a rare genetic disease caused by variants in alpha-kinase 1 (ALPK1) resulting in downstream pro-inflammatory signaling mediated by the TIFA/TRAF6/NF-κB pathway. Here, we report the design of an ALPK1 inhibitor, DF-003, with pharmacokinetic properties suitable for daily oral dosing. In biochemical assays, DF-003 potently inhibits human ALPK1 (IC = 1.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Cereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDF