Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca from cTnC, k, resulting in HCM and DCM respectively [1]. Expression of these mutations in transgenic mice was used to provide experimental data for incorporation of 30 and 50% (respectively) into sarcomeres. Here we demonstrate that fixed length twitch contractions of trabeculae from mice containing mutant differ from WT; L48Q trabeculae have slower relaxation while I61Q trabeculae have markedly reduced peak tension. Using our multiscale modelling approach [2] we were able to describe the tension transients of WT mouse myocardium. Tension transients for the mutant cTnCs were simulated with changes in k, measured experimentally for each cTnC mutant in whole troponin complex, a change in the affinity of cTnC for cTnI, and a reduction in the number of detached crossbridges available for binding. A major advantage of the multiscale explicit 3-D model is that it predicts the effects of variable mutation incorporation, and the effects of variations in mutation distribution within thin filaments in sarcomeres. Such effects are currently impossible to explore experimentally. We explored random and clustered distributions of mutant cTnCs in thin filaments, as well as distributions of individual thin filaments with only WT or mutant cTnCs present. The effects of variable amounts of incorporation and non-random distribution of mutant cTnCs are more marked for I61Q than L48Q cTnC. We conclude that this approach can be effective for study on mutations in multiple proteins of the sarcomere. SUMMARY: A challenge in experimental studies of diseases is accounting for the effect of variable mutation incorporation into myofilaments. Here we use a spatially explicit computational approach, informed by experimental data from transgenic mice expressing one of two mutations in cardiac Troponin C that increase or decrease calcium sensitivity. We demonstrate that the model can accurately describe twitch contractions for the data and go on to explore the effect of variable mutant incorporation and localization on simulated cardiac muscle twitches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8240760PMC
http://dx.doi.org/10.1016/j.yjmcc.2021.02.009DOI Listing

Publication Analysis

Top Keywords

mutant ctncs
16
twitch contractions
12
mutation incorporation
12
thin filaments
12
incorporation
8
cardiac muscle
8
spatially explicit
8
incorporation myofilaments
8
mutations cardiac
8
transgenic mice
8

Similar Publications

One of the complexities of understanding the pathology of familial forms of cardiac diseases is the level of mutation incorporation in sarcomeres. Computational models of the sarcomere that are spatially explicit offer an approach to study aspects of mutational incorporation into myofilaments that are more challenging to get at experimentally. We studied two well characterized mutations of cardiac TnC, L48Q and I61Q, that decrease or increase the release rate of Ca from cTnC, k, resulting in HCM and DCM respectively [1].

View Article and Find Full Text PDF

Mutations in -the gene encoding cardiac troponin C (cTnC)-that have been associated with hypertrophic cardiomyopathy (HCM) and cardiac dysfunction may also affect Ca-regulation and function of slow skeletal muscle since the same gene is expressed in both cardiac and slow skeletal muscle. Therefore, we reconstituted rabbit soleus fibers and bovine masseter myofibrils with mutant cTnCs (A8V, C84Y, E134D, and D145E) associated with HCM to investigate their effects on contractile force and ATPase rates, respectively. Previously, we showed that these HCM cTnC mutants, except for E134D, increased the Ca sensitivity of force development in cardiac preparations.

View Article and Find Full Text PDF

Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca(2+) sensitivity of contraction. Mutations in the Ca(2+) sensor, troponin C (TnC), were generated to increase/decrease the Ca(2+) sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM.

View Article and Find Full Text PDF

Recently four new hypertrophic cardiomyopathy mutations in cardiac troponin C (cTnC) (A8V, C84Y, E134D, and D145E) were reported, and their effects on the Ca(2+) sensitivity of force development were evaluated (Landstrom, A. P., Parvatiyar, M.

View Article and Find Full Text PDF

Two novel mutations (G159D and L29Q) in cardiac troponin C (CTnC) associate their phenotypic outcomes with dilated (DCM) and hypertrophic cardiomyopathy (HCM), respectively. Current paradigms propose that sarcomeric mutations associated with DCM decrease the myofilament Ca2+ sensitivity, whereas those associated with HCM increase it. Therefore, we incorporated the mutant CTnCs into skinned cardiac muscle in order to determine if their effects on the Ca2+ sensitivities of tension and ATPase activity coincide with the current paradigms and phenotypic outcomes.

View Article and Find Full Text PDF