Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904252PMC
http://dx.doi.org/10.1126/sciadv.aaz5236DOI Listing

Publication Analysis

Top Keywords

permafrost region
16
soc stocks
12
spatial heterogeneity
8
environmental predictors
8
region soil
8
soil organic
8
organic carbon
8
tibetan region
8
region
7
permafrost
5

Similar Publications

Permafrost degradation is accelerating across the Arctic, posing growing risks to cultural heritage (CH) sites. This study presents the first archipelago-scale hazard assessment of CH to retrogressive thaw slumps (RTS) and thermo-erosion gullies (TEG) in Svalbard, one of the fastest-warming regions globally. By overlaying recent RTS and TEG inventories with the spatial distribution of protected CH sites, we quantify hazard exposure for 55.

View Article and Find Full Text PDF

Permafrost thaw in peatlands risks increasing the production and mobilization of methylmercury (MeHg), a bioaccumulative neurotoxin that poses a health hazard to humans. We studied 12 peatlands on a trophic gradient in northwestern Canada, including permafrost peat plateaus and thawed bogs and fens, to determine the effects of thaw on MeHg production from measures of soil and porewater MeHg and in situ methylation assays. The production of MeHg was greater in thawed peatlands, especially rich fens, as indicated by higher potential rates of microbial methylation of inorganic mercury (Hg) to MeHg and higher soil %MeHg (MeHg:total Hg).

View Article and Find Full Text PDF

The dynamics of atmospheric CO concentrations during and following the last deglaciation have mainly been ascribed to carbon release from and uptake in oceans, primarily in the Southern Ocean. But recent studies also point toward a terrestrial influence. We quantify dynamic changes to northern terrestrial carbon stocks from the Last Glacial Maximum (21,000 years) until present at millennial time steps using a combination of paleo-data and climate-biome modeling.

View Article and Find Full Text PDF

Seasonal patterns of mercury dynamics in thermokarst lakes from sporadic permafrost.

Environ Pollut

August 2025

Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal; Centre for Northern Studies, Université Laval, Québec, QC, Canada. Electronic address: joao.cana

Mercury (Hg) is a natural occurring element but is often emitted from anthropogenic sources and reaches the Arctic via long-range atmospheric transport. Organic matter (OM)-rich thermokarst lakes are characteristic features of the permafrost landscape in this region, where monomethylmercury (MMHg) production can be enhanced, as this process is mainly carried out by prokaryotes. To better understand the complex Hg biogeochemical cycle, two distinct thermokarst lakes (SAS 1A and SAS 2A) in sporadic permafrost in the Sasapimakwananistikw (SAS) River Valley, Canadian Subarctic, were sampled during winter and summer of 2022.

View Article and Find Full Text PDF

The source area of the Yangtze River (SAYR), part of the Tibetan Plateau, is an ecologically fragile alpine region sensitive to climate change. Current research has predominantly examined hydrological and ecological responses as isolated systems, failing to address the coupled mechanisms through which permafrost degradation mediates water-carbon interactions‌. In this study, we used a fully coupled eco-hydrological model that integrates permafrost processes, along with multi-source remote sensing data, experimental monitoring, and machine learning, to quantify the water retention and carbon sequestration capacity over the past 20 years.

View Article and Find Full Text PDF