Genome-scale deconvolution of RNA structure ensembles.

Nat Methods

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

RNA structure heterogeneity is a major challenge when querying RNA structures with chemical probing. We introduce DRACO, an algorithm for the deconvolution of coexisting RNA conformations from mutational profiling experiments. Analysis of the SARS-CoV-2 genome using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and DRACO, identifies multiple regions that fold into two mutually exclusive conformations, including a conserved structural switch in the 3' untranslated region. This work may open the way to dissecting the heterogeneity of the RNA structurome.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41592-021-01075-wDOI Listing

Publication Analysis

Top Keywords

rna structure
8
mutational profiling
8
rna
5
genome-scale deconvolution
4
deconvolution rna
4
structure ensembles
4
ensembles rna
4
structure heterogeneity
4
heterogeneity major
4
major challenge
4

Similar Publications

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are emerging as vital structural elements involved in processes like gene regulation, translation, and genome stability. Found in untranslated regions of messenger RNAs (mRNAs), they influence translation efficiency and mRNA localization. Additionally, rG4s of long noncoding RNAs and telomeric RNA play roles in RNA processing and cellular aging.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Methylation of histone H3 at lysine 9 (H3K9me), a hallmark of heterochromatin, is catalyzed by Clr4/Suv39. Clr4/Suv39 contains two conserved domains-an N-terminal chromodomain and a C-terminal catalytic domain-connected by an intrinsically disordered region (IDR). Several mechanisms have been proposed to regulate Clr4/Suv39 activity, but how it is regulated under physiological conditions remains largely unknown.

View Article and Find Full Text PDF

STN1 Shields CTC1 From TRIM32-Mediated Ubiquitination to Prevent Cellular Aging.

Aging Cell

September 2025

Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.

The CST (CTC1-STN1-TEN1) complex, a single-stranded DNA (ssDNA) binding complex, is essential for telomere maintenance and genome stability. Depletion of either CTC1 or STN1 results in cellular senescence, while mutations in these components are associated with severe hereditary disorders. In this study, we demonstrate that the direct STN1-CTC1 interaction stabilizes CTC1 by preventing its degradation via TRIM32 mediated ubiquitination.

View Article and Find Full Text PDF