98%
921
2 minutes
20
Intestinal microbiota are a key factor in maintaining good health and production results in chickens. They play an important role in the stimulation of immune responses, as well as in metabolic processes and nutrient digestion. Bioactive substances such as prebiotics, probiotics, or a combination of the two (synbiotic) can effectively stimulate intestinal microbiota and therefore replace antibiotic growth promoters. Intestinal microbiota might be stimulated at the early stage of embryo development . The aim of the study was to analyze the expression of genes related to energy metabolism and immune response after the administration of inulin and a synbiotic, in which lactic acid bacteria were combined with inulin in the intestines and immune tissues of chicken broilers. The experiment was performed on male broiler chickens. Eggs were incubated for 21 days in a commercial hatchery. On day 12 of egg incubation, inulin as a prebiotic and inulin with subsp. as a synbiotic were delivered to the egg chamber. The control group was injected with physiological saline. On day 35 post-hatching, birds from each group were randomly selected and sacrificed. Tissues (spleen, cecal tonsils, and large intestine) were collected and intended for RNA isolation. The gene panel (, and ) was selected based on the microarray dataset and biological functions of genes related to the energy metabolism and immune responses. Isolated RNA was analyzed using the RT-qPCR method, and the relative gene expression was calculated. In our experiment, distinct effects of prebiotics and synbiotics following delivery were manifested in all analyzed tissues, with the lowest number of genes with altered expression shown in the large intestines of broilers. The results demonstrated that prebiotics or synbiotics provide a potent stimulation of gene expression in the spleen and cecal tonsils of broiler chickens. The overall number of gene expression levels and the magnitude of their changes in the spleen and cecal tonsils were higher in the group of synbiotic chickens compared to the prebiotic group.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7886801 | PMC |
http://dx.doi.org/10.3389/fvets.2020.632476 | DOI Listing |
BMC Microbiol
September 2025
Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.
View Article and Find Full Text PDFJ Nutr
September 2025
Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057 Evry, France. Electronic address:
Background: Breast milk represents the optimal feeding strategy for newborns, supporting not only nutrition but also the establishment of a unique microbiota. The bacterial composition and diversity of this microbiota are shaped by various maternal and infant-related factors.
Objectives: This single-center prospective study aimed to examine the breast milk microbiota and determine the maternal and infant-related factors influencing its composition and diversity over the time.
Fish Shellfish Immunol
September 2025
Laboratory of Applied Immunology in Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88035-972 Florianópolis, SC, Brazil. Electronic address:
Environmental and nutritional factors are critical in modulating the immune system of Penaeus vannamei, particularly under viral threats such as white spot syndrome virus (WSSV). This study evaluated the effects of two Amazonian plant-based feed additives, buriti (Mauritia flexuosa) and pracaxi (Pentaclethra macroloba) brans, on shrimp immunocompetence, oxidative balance, and resistance to WSSV. Shrimp were fed diets supplemented with 4% or 8% of each ingredient.
View Article and Find Full Text PDFJ Adv Res
September 2025
National Medical Products Administration (NMPA) Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou, China. Electronic address: huangzhenlie85825
Introduction: The increasing use of biodegradable plastics has led to the inevitable human consumption of biodegradable microplastics (MPs). These MPs can be degraded and absorbed into various organs and tissues via the gastrointestinal tract, with the liver being the primary target for digestion and absorption.
Objectives: This study aimed to investigate the toxic effects and mechanisms of biodegradable MPs on the liver following gastrointestinal degradation.
J Ethnopharmacol
September 2025
Lab of Food Function and Nutrigenomics, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; Institute of Integrative Medicine, Hunan Provincial Key Laboratory of Liver Visceral Manifestation in Traditional Chinese Medicine, Department of Integrated Traditio
Ethnopharmacological Relevance: Corus officinalis Siebold & Zucc belongs to the genus Cornus in the Cornaceae family, and was first recorded in the "Shennong Herbal Classic", now has been included in "according to the tradition of both food and Chinese herbal medicines", consist of kidney and liver tonifying, antioxidant substances including cycloid glycosides, flavonoids, polyphenols, organic acids, etc. AIM OF THE STUDY: This study was aimed at discovering the mechanism underlying the anti-hyperemia effect of Cor in rats, particularly its protective effect against liver and kidney dysfunction caused by HUA.
Materials And Methods: In this study, the effect of Cor extract against HUA was verified in rats, subsequently, network pharmacology combined with non-targeted metabolomic were performed to investigate its composition characteristics, and further multi-omics studies and molecular validation were performed to reveal molecular mechanism both in vivo and in vitro.