Proof-of-concept analytical instrument for label-free optical deconvolution of protein species in a mixture.

J Chromatogr A

Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London, WC1E 6BT, UK. Electronic address:

Published: March 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The adoption of process analytical technologies by the biopharmaceutical industry can reduce the cost of therapeutic drugs and facilitate investigation of new bioprocesses. Control of critical process parameters to retain critical product quality attributes within strict bounds is important for ensuring a consistently high product quality, but developing the sophisticated analytical technologies required has proven to be a major challenge. Here, we demonstrate a new optical technique for continuous monitoring of protein species as they are eluted from a chromatographic column, even when they fully co-elute with other protein species, without making any assumption about or peak-fitting to the elution profile. To achieve this, we designed and constructed a time-resolved intrinsic fluorescence lifetime chromatograph, and established an analytical framework for deconvolving and quantifying distinct but co-eluting protein species in real time. This proof-of-concept technology has potentially useful applications as a process analytical technology and more generally as an analytical technique for label-free quantification of proteins in mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2021.461968DOI Listing

Publication Analysis

Top Keywords

protein species
16
process analytical
8
analytical technologies
8
product quality
8
analytical
5
proof-of-concept analytical
4
analytical instrument
4
instrument label-free
4
label-free optical
4
optical deconvolution
4

Similar Publications

Stress-induced organismal death is genetically regulated by the mTOR-Zeste-Phae1 axis.

Proc Natl Acad Sci U S A

September 2025

Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8577, Japan.

All organisms are exposed to various stressors, which can sometimes lead to organismal death, depending on their intensity. While stress-induced organismal death has been observed in many species, the underlying mechanisms remain unclear. In this study, we investigated the molecular mechanisms of stress-induced organismal death in the fruit fly .

View Article and Find Full Text PDF

Microbial co-cultures provide significant advantages over commonly used axenic cultures in biotechnological processes, including increased productivity and access to novel natural products. However, differentiated quantification of the microorganisms in co-cultures remains challenging using conventional measurement techniques. To address this, a fluorescence-based approach was developed to enable the differentiated online monitoring of microbial growth in co-cultures.

View Article and Find Full Text PDF

Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.

View Article and Find Full Text PDF

Escherichia coli strain O55 contains two cryptic plasmids that depend on each other to replicate.

Arch Microbiol

September 2025

División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Zip Code 36050, Guanajuato, Mexico.

Plasmids are fundamental to molecular biology and biotechnology, playing a crucial role in bacterial evolution. Some plasmids are linked to complex cellular dynamics, including pathogenicity islands, antibiotic resistance, and gene mobilization. This study reports the isolation and sequencing of two cryptic plasmids with different electrophoretic mobilities from the Escherichia coli clinical isolate O55.

View Article and Find Full Text PDF

Plastoglobuli (PG) are plant lipoprotein compartments, present in plastid organelles. They are involved in the formation and/or storage of lipophilic metabolites. FIBRILLINs (FBNs) are one of the main PG-associated proteins and are particularly abundant in carotenoid-enriched chromoplasts found in ripe fruits and flowers.

View Article and Find Full Text PDF