Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kelp forests form an important biogenic habitat that responds to natural and human drivers. Global concerns exist about threats to kelp forests, yet long-term information is limited and research suggests that trends are geographically distinct. We examined distribution of the bull kelp Nereocystis luetkeana over 145 years in South Puget Sound (SPS), a semi-protected inner basin in a fjord estuary complex in the northeast Pacific Ocean. We synthesized 48 historical and modern Nereocystis surveys and examined presence/absence within 1-km segments along 452 km of shoreline. Compared to the earliest baseline in 1878, Nereocystis extent in 2017 decreased 63%, with individual sub-basins showing up to 96% loss. Losses have persisted for decades, across a range of climate conditions. In recent decades, Nereocystis predominantly occurred along shorelines with intense currents and mixing, where temperature and nutrient concentrations did not reach thresholds for impacts to Nereocystis performance, and high current speeds likely excluded grazers. Losses predominated in areas with elevated temperature, lower nutrient concentrations, and relatively low current velocities. The pattern of long-term losses in SPS contrasts with stability in floating kelp abundance during the last century in an area of the Salish Sea with greater wave exposure and proximity to oceanic conditions. These findings support the hypothesis that kelp beds along wave-sheltered shorelines exhibit greater sensitivity to environmental stressors. Additionally, shorelines with strong currents and deep-water mixing may provide refugia within sheltered systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888675PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229703PLOS

Publication Analysis

Top Keywords

kelp forests
12
inner basin
8
salish sea
8
nutrient concentrations
8
kelp
6
nereocystis
5
long-term changes
4
changes kelp
4
forests inner
4
basin salish
4

Similar Publications

The sunflower star, Pycnopodia helianthoides, was a top benthic predator throughout its former range from Alaska to northern Mexico, until its populations were devastated starting in 2013 by a disease known as seastar wasting. The subsequent absence of sunflower stars from northern California waters was coincident with a dramatic ecological phase shift from healthy bull kelp forests (Nereocystis luetkeana) to barrens formed by purple sea urchins (Strongylocentrotus purpuratus), a prey of sunflower stars. Modeling suggests that restoration and resilience of kelp forests can be enhanced by the return of sunflower stars.

View Article and Find Full Text PDF

Potential blue carbon in the fringe of Southern European Kelp forests.

Sci Rep

August 2025

CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.

Blue Carbon encompasses the organic carbon sequestered and stored by coastal and marine ecosystems, including seaweed forests. This study aims to quantify the potential Blue Carbon storage and sequestration rates of subtidal kelp forests in Northern Portugal, focusing on the most dominant species Laminaria hyperborea and Saccorhiza polyschides. Through in-situ measurements of forest extension, biomass, growth, and carbon content, we determined that these kelp forests store approximately 16.

View Article and Find Full Text PDF

Kelp forests form some of the most productive areas on earth and are proposed to sequester carbon in the ocean, largely in the form of released dissolved organic carbon (DOC). Here we investigate the role of environmental, seasonal and age-related physiological gradients on the partitioning of net primary production (NPP) into DOC by the canopy forming giant kelp (Macrocystis pyrifera). Rates of DOC production were strongly influenced by an age-related decline in physiological condition (i.

View Article and Find Full Text PDF

Global warming is driving contraction of species' ranges through migration and mortality at their warm edge. However, for most species more subtle, sub-lethal changes in performance will be a more ubiquitous response to the Anthropocene. It has been suggested that reduction in body size will be a universal response to warming for cold-water species.

View Article and Find Full Text PDF

More than 10 years following the onset of the sea star wasting disease (SSWD) epidemic, affecting over 20 asteroid species from Mexico to Alaska, the causative agent has been elusive. SSWD killed billions of the most susceptible species, sunflower sea stars (Pycnopodia helianthoides), initiating a trophic cascade involving unchecked urchin population growth and the widespread loss of kelp forests. Identifying the causative agent underpins the development of recovery strategies.

View Article and Find Full Text PDF