98%
921
2 minutes
20
BioSAXS is a popular technique used in molecular and structural biology to determine the solution structure, particle size and shape, surface-to-volume ratio and conformational changes of macromolecules and macromolecular complexes. A high quality SAXS dataset for structural modeling must be from monodisperse, homogeneous samples and this is often only reached by a combination of inline chromatography and immediate SAXS measurement. Most commonly, size-exclusion chromatography is used to separate samples and exclude contaminants and aggregations from the particle of interest allowing SAXS measurements to be made from a well-resolved chromatographic peak of a single protein species. Still, in some cases, even inline purification is not a guarantee of monodisperse samples, either because multiple components are too close to each other in size or changes in shape induced through binding alter perceived elution time. In these cases, it may be possible to deconvolute the SAXS data of a mixture to obtain the idealized SAXS curves of individual components. Here, we show how this is achieved and the practical analysis of SEC-SAXS data is performed on ideal and difficult samples. Specifically, we show the SEC-SAXS analysis of the vaccinia E9 DNA polymerase exonuclease minus mutant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/61578 | DOI Listing |
PLoS One
May 2025
Laboratorio de Bioquímica Estructural, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
The structural analysis of catechol 1,2 dioxygenase from Stutzerimonas frequens GOM2, SfC12DO, was conducted using various structural techniques. SEC-SAXS experiments revealed that SfC12DO, after lyophilization and reconstitution processes, can form multiple enzymatically active oligomers, including dimers, tetramers, and octamers. These findings differ from previous studies, which reported active dimers in homologous counterparts with available crystallographic structures, or trimers observed exclusively in solution for SfC12DO and its homologous isoA C12DO from Acinetobacter radioresistens under low ionic strength conditions.
View Article and Find Full Text PDFACS Chem Neurosci
May 2025
Paul Flechsig Institute - Centre for Neuropathology and Brain Research, University of Leipzig, 04103 Leipzig, Germany.
α-Synuclein (aSyn) aggregation represents a key event in the neurodegenerative cascade of synucleinopathies. Initially, aSyn appears as an intrinsically disordered protein. However, its structural flexibility allows aSyn to either adopt α-helical conformations, relevant for physiological functions at presynaptic vesicles, or form β-strand-rich aggregates, leading to toxic oligomers.
View Article and Find Full Text PDFBiomacromolecules
April 2025
Laboratoire de Génie Chimique, Université de Toulouse, CNRS, INP, UPS, 31062 Toulouse, France.
This work leverages the integration of size exclusion chromatography (SEC) with small-angle X-ray scattering (SAXS) to investigate the complex interactions between human serum albumin (HSA) and poly(acrylic acid) (PAA). The SEC-SAXS approach is proven in this study to effectively eliminate aggregates, enhancing data quality and revealing intricate details of protein-polymer associations. Initial findings demonstrate that HSA maintains its native structure across pH 5-8 and that HSA shows no significant interaction with the neutral polyethylene glycol (PEG).
View Article and Find Full Text PDFFEBS Lett
May 2025
Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
Immunoglobulin G1 (IgG1) antibodies undergo denaturation in acidic conditions, resulting in an alternatively folded state (AFS). The AFS structure is more compact than the native state. However, the prevalence of AFS in other subclasses remains largely unexplored.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
February 2025
Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
Background: Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples.
View Article and Find Full Text PDF