α-Synuclein (aSyn) aggregation represents a key event in the neurodegenerative cascade of synucleinopathies. Initially, aSyn appears as an intrinsically disordered protein. However, its structural flexibility allows aSyn to either adopt α-helical conformations, relevant for physiological functions at presynaptic vesicles, or form β-strand-rich aggregates, leading to toxic oligomers.
View Article and Find Full Text PDFParkinson's disease (PD) is a common neurodegenerative movement disorder, characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of aggregated alpha synuclein (aSyn). The disease often presents with early prodromal non-motor symptoms and later motor symptoms. Diagnosing PD based purely on motor symptoms is often too late for successful intervention, as a significant neuronal loss has already occurred.
View Article and Find Full Text PDFThe deposition of β-amyloid peptides and of α-synuclein proteins is a neuropathological hallmark in the brains of Alzheimer's disease (AD) and Parkinson's disease (PD) subjects, respectively. However, there is accumulative evidence that both proteins are not exclusive for their clinical entity but instead co-exist and interact with each other. Here, we investigated the presence of a newly identified, pyroglutamate79-modified α-synuclein variant (pGlu79-aSyn)-along with the enzyme matrix metalloproteinase-3 (MMP-3) and glutaminyl cyclase (QC) implicated in its formation-in AD and in the transgenic Tg2576 AD mouse model.
View Article and Find Full Text PDFBehav Brain Res
September 2022
α-Synuclein (aSyn) is a protein implicated in physiological functions such as neurotransmitter release at the synapse and the regulation of gene expression in the nucleus. In addition, pathological aSyn assemblies are characteristic for a class of protein aggregation disorders referred to as synucleinopathies, where aSyn aggregates appear as Lewy bodies and Lewy neurites or as glial cytoplasmic inclusions. We recently discovered a novel post-translational pyroglutamate (pGlu) modification at Gln79 of N-truncated aSyn that promotes oligomer formation and neurotoxicity in human synucleinopathies.
View Article and Find Full Text PDFActa Neuropathol
September 2021
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is neuropathologically characterized by degeneration of dopaminergic neurons of the substantia nigra (SN) and formation of Lewy bodies and Lewy neurites composed of aggregated α-synuclein. Proteolysis of α-synuclein by matrix metalloproteinases was shown to facilitate its aggregation and to affect cell viability. One of the proteolysed fragments, Gln79-α-synuclein, possesses a glutamine residue at its N-terminus.
View Article and Find Full Text PDFIn Parkinson's disease, aggregates of α-synuclein within Lewy bodies and Lewy neurites represent neuropathological hallmarks. However, the cellular and molecular mechanisms triggering oligomeric and fibrillary α-synuclein aggregation are not fully understood. Recent evidence indicates that oxidative stress induced by metal ions and post-translational modifications such as phosphorylation, ubiquitination, nitration, glycation, and SUMOylation affect α-synuclein conformation along with its aggregation propensity and neurotoxic profiles.
View Article and Find Full Text PDFOver the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities.
View Article and Find Full Text PDFPurpose: To evaluate the time course of late rectal mucosal changes after prostate cancer radiotherapy (RT).
Patients And Methods: A rectosigmoidoscopy was performed at 12, 24, and 65 months after RT in 20 patients. Rectal mucosal changes (telangiectasia, congested mucosa, ulceration, stricture, and necrosis) were scored and documented according to the Vienna Rectoscopy Score (VRS, score 0-3).
Objective: To analyse over 6.5 yr the natural history of lower urinary tract symptoms (LUTS) of continent women participating in a health investigation.
Methods: Women participating in a health screening survey in the area of Vienna in 1998-1999 underwent a detailed health investigation and completed the Bristol Female LUTS questionnaire.