Nucleic Acids Res
December 2024
In recent years, pathogenic variants in ARS genes, encoding aminoacyl-tRNA synthetases (aaRSs), have been associated with human disease. Patients harbouring pathogenic variants in ARS genes have clinical signs partly unique to certain aaRSs defects, partly overlapping between the different aaRSs defects. Diagnosis relies mostly on genetics and remains challenging, often requiring functional validation of new ARS variants.
View Article and Find Full Text PDFMalaria is caused by Plasmodium parasites that multiply inside host cells and can be lethal when P. falciparum is involved. We identified tRip as a membrane protein that facilitates the import of exogenous transfer RNA (tRNA) into the parasite.
View Article and Find Full Text PDFPremature ovarian insufficiency (POI) affects 1 in 100 women and is a leading cause of female infertility. There are over 80 genes in which variants can cause POI, with these explaining only a minority of cases. Whole exome sequencing (WES) can be a useful tool for POI patient management, allowing clinical care to be personalized to underlying cause.
View Article and Find Full Text PDFIntroduction: Mutations in QARS1, which encodes human glutaminyl-tRNA synthetase, have been associated with epilepsy, developmental regression, progressive microcephaly and cerebral atrophy. Epilepsy caused by variants in QARS1 is usually drug-resistant and intractable. Childhood onset epilepsy is also reported in various aminoacyl-tRNA synthetase disorders.
View Article and Find Full Text PDFMalaria is a life-threatening and devastating parasitic disease. Our previous work showed that parasite development requires the import of exogenous transfer RNAs (tRNAs), which represents a novel and unique form of host-pathogen interaction, as well as a potentially druggable target. This import is mediated by tRip (tRNA import protein), a membrane protein located on the parasite surface.
View Article and Find Full Text PDFLARS2 variants are associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss, and with an infantile lethal multisystem disorder: Hydrops, lactic acidosis, sideroblastic anemia (HLASA) in one individual. Recently we reported LARS2 deafness with (ovario) leukodystrophy. Here we describe five patients with a range of phenotypes, in whom we identified biallelic LARS2 variants: three patients with a HLASA-like phenotype, an individual with Perrault syndrome whose affected siblings also had leukodystrophy, and an individual with a reversible mitochondrial myopathy, lactic acidosis, and developmental delay.
View Article and Find Full Text PDFOver the past two decades small-angle X-ray scattering (SAXS) has become a popular method to characterize solutions of biomolecules including ribonucleic acid (RNA). In an integrative structural approach, SAXS is complementary to crystallography, NMR, and electron microscopy and provides information about RNA architecture and dynamics. This chapter highlights the practical advantages of combining size-exclusion chromatography and SAXS at synchrotron facilities.
View Article and Find Full Text PDFObjective: To describe the leukodystrophy caused by pathogenic variants in and , encoding mitochondrial leucyl transfer RNA (tRNA) synthase and mitochondrial and cytoplasmic lysyl tRNA synthase, respectively.
Methods: We composed a group of 5 patients with leukodystrophy, in whom whole-genome or whole-exome sequencing revealed pathogenic variants in or . Clinical information, brain MRIs, and postmortem brain autopsy data were collected.
The life cycle of Plasmodium falciparum, the agent responsible for malaria, depends on both cytosolic and apicoplast translation fidelity. Apicoplast aminoacyl-tRNA synthetases (aaRS) are bacterial-like enzymes devoted to organellar tRNA aminoacylation. They are all encoded by the nuclear genome and are translocated into the apicoplast only after cytosolic biosynthesis.
View Article and Find Full Text PDFvariants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and variants that we identified using a sideroblastic anemia gene panel or exome sequencing.
View Article and Find Full Text PDFPathogenic variants in mitochondrial aminoacyl-tRNA synthetases result in a broad range of mitochondrial respiratory chain disorders despite their shared role in mitochondrial protein synthesis. LARS2 encodes the mitochondrial leucyl-tRNA synthetase, which attaches leucine to its cognate tRNA. Sequence variants in LARS2 have previously been associated with Perrault syndrome, characterized by premature ovarian failure and hearing loss (OMIM #615300).
View Article and Find Full Text PDFThe canonical activity of glycyl-tRNA synthetase (GARS) is to charge glycine onto its cognate tRNAs. However, outside translation, GARS also participates in many other functions. A single gene encodes both the cytosolic and mitochondrial forms of GARS but 2 mRNA isoforms were identified.
View Article and Find Full Text PDFBackground: Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2.
Methods: Twelve patients were screened for YARS2 mutations by Sanger sequencing.
Genome sequencing revealed an extreme AT-rich genome and a profusion of asparagine repeats associated with low complexity regions (LCRs) in proteins of the malarial parasite Plasmodium falciparum. Despite their abundance, the function of these LCRs remains unclear. Because they occur in almost all families of plasmodial proteins, the occurrence of LCRs cannot be associated with any specific metabolic pathway; yet their accumulation must have given selective advantages to the parasite.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2011
Several classes of small noncoding RNAs are key players in cellular metabolism including mRNA decoding, RNA processing, and mRNA stability. Here we show that a tRNA(Asp) isodecoder, corresponding to a human tRNA-derived sequence, binds to an embedded Alu RNA element contained in the 3' UTR of the human aspartyl-tRNA synthetase mRNA. This interaction between two well-known classes of RNA molecules, tRNA and Alu RNA, is driven by an unexpected structural motif and induces a global rearrangement of the 3' UTR.
View Article and Find Full Text PDFMitochondrial respiratory chain disorders are a heterogeneous group of disorders in which the underlying genetic defect is often unknown. We have identified a pathogenic mutation (c.156C>G [p.
View Article and Find Full Text PDFIn most organisms, the information necessary to specify the native 3D-structures of proteins is encoded in the corresponding mRNA sequences. Translational accuracy and efficiency are coupled and sequences that are slowly translated play an essential role in the concomitant folding of protein domains. Here, we suggest that the well-known mechanisms for the regulation of translational efficiency, which involves mRNA structure and/or asymmetric tRNA abundance, do not apply to all organisms.
View Article and Find Full Text PDFA growing number of human pathologies are ascribed to mutations in mitochondrial tRNA genes. Here, we report biochemical investigations on three mt-tRNA(Tyr) molecules with point substitutions associated with diseases. The mutations occur in the atypical T- and D-loops at positions homologous to those involved in the tertiary interaction network of canonical tRNAs.
View Article and Find Full Text PDFWe report the structure of a strictly mitochondrial human synthetase, namely tyrosyl-tRNA synthetase (mt-TyrRS), in complex with an adenylate analog at 2.2 A resolution. The structure is that of an active enzyme deprived of the C-terminal S4-like domain and resembles eubacterial TyrRSs with a canonical tyrosine-binding pocket and adenylate-binding residues typical of class I synthetases.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases are pivotal in determining how the genetic code is translated in amino acids and in providing the substrate for protein synthesis. As such, they fulfill a key role in a process universally conserved in all cellular organisms from their most complex to their most reduced parasitic forms. In contrast, even complex viruses were not found to encode much translation machinery, with the exception of isolated components such as tRNAs.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
April 2007
Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.
View Article and Find Full Text PDFIn metazoans, cell-cycle-dependent histones are produced from poly(A)-lacking mRNAs. The 3' end of histone mRNAs is formed by an endonucleolytic cleavage of longer precursors between a conserved stem-loop structure and a purine-rich histone downstream element (HDE). The cleavage requires at least two trans-acting factors: the stem-loop binding protein (SLBP), which binds to the stem-loop and the U7 snRNP, which anchors to histone pre-mRNAs by annealing to the HDE.
View Article and Find Full Text PDFTobacco mosaic virus (TMV) and Nemesia ring necrosis virus (NeRNV) belong to the Tobamoviridae and Tymoviridae families, respectively. Although their RNAs present different 5'-untranslated regions and different family-specific genomic organizations, they share common 3'-ends organized into three consecutive pseudoknot structures followed by a histidylatable tRNA-like structure (TLS). We investigate here whether the histidine residue becomes incorporated into viral proteins and if the TLSs of TMV and NeRNV play a role in viral translation.
View Article and Find Full Text PDFThe tRNA identity rules ensuring fidelity of translation are globally conserved throughout evolution except for tyrosyl-tRNA synthetases (TyrRSs) that display species-specific tRNA recognition. This discrimination originates from the presence of a conserved identity pair, G1-C72, located at the top of the acceptor stem of tRNA(Tyr) from eubacteria that is invariably replaced by an unusual C1-G72 pair in archaeal and eubacterial tRNA(Tyr). In addition to the key role of pair 1-72 in tyrosylation, discriminator base A73, the anticodon triplet and the large variable region (present in eubacterial tRNA(Tyr) but not found in eukaryal tRNA(Tyr)) contribute to tyrosylation with variable strengths.
View Article and Find Full Text PDFIn the methanogenic archae Methanosarcina barkeri, insertion of pyrrolysine, the 22nd amino acid, results from the decoding of an amber UAG codon in the mRNA of monomethylamine methyltransferases (MtmB). Sequence comparisons combined with structural enzymatic and chemical probing on M. barkeri MtmB1 mRNA demonstrate the presence of a hairpin motif located immediately after the redefined UAG codon.
View Article and Find Full Text PDF