98%
921
2 minutes
20
The collective behavior of DNA is important for exploring new types of bacteria in the means of detection, which is greatly interested in the understanding of interactions between DNAs in living systems. How they self-organize themselves is a physical common phenomenon for broad ranges of thermodynamic systems. In this work, the equilibrium phase diagrams of charged chiral rods (fd viruses) at low ionic strengths (below a few mM) are provided to demonstrate both replicas of (or self-organized) twist orders and replica symmetry breaking near high concentration glass-states. By varying the ionic strengths, it appears that a critical ionic strength is obtained below 1-2 mM salt, where the twist and freezing of nematic domains diverge. Also, the microscopic relaxation is revealed by the ionic strength-dependent effective Debye screening length. At a fixed low ionic strength, the local orientations of twist are shown by two different length scales of optical pitch, in the chiral-nematic N* phase and the helical domains [Formula: see text], for low and high concentration, respectively. RSB occurs in several cases of crossing phase boundary lines in the equilibrium phase diagram of DNA-rod concentration and ionic strength, including long-time kinetic arrests in the presence of twist orders. The different pathways of PATH I, II and III are due to many-body effects of randomized orientations for charged fd rods undergoing long-range electrostatic interactions in bulk elastic medium. In addition, the thermal stability are shown for chiral pitches of the N* phase and the abnormal cooling process of a specific heat in a structural glass. Here, the concentration-driven twist-effects of charged DNA rods are explored using various experimental methods involving image-time correlation, microscopic dynamics in small angle dynamic light scattering, optical activity in second harmonic generation, and differential scanning calorimetry for the glass state.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7876043 | PMC |
http://dx.doi.org/10.1038/s41598-021-82653-y | DOI Listing |
The solubility product is a rigorous description of the phase boundary for salt precipitation and has also been used to qualitatively describe the condensation of biomolecules. Here we present a derivation of the solubility product showing that the solubility product is also a robust description of biomolecules phase boundaries if care is taken to account for soluble oligomers and variable composition within the dense phase. Our calculation describes equilibrium between unbound monomers, the dense phase, and an ensemble of oligomer complexes with significant finite-size contributions to their free energy.
View Article and Find Full Text PDFAnal Chim Acta
October 2025
State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Techno
Background: Organophosphate tri-esters (tri-OPEs), widely used flame retardants, include alkyl-, halogenated-, and aryl-substituted types with distinct physicochemical properties. They may readily enter the ambient environment through volatilization, mechanical abrasion, and dissolution mechanisms occurring throughout the product lifecycle. To date, a range of monitoring methodologies incorporating sample pretreatment techniques have been developed to characterize the environmental distribution of tri-OPEs.
View Article and Find Full Text PDFJ Biomech
August 2025
Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
Knee joint osteoarthritis (OA) is characterized by alterations in articular cartilage and subchondral bone, but concurrent biomechanical changes in the bundles of human anterior cruciate ligament are poorly known. This study aimed at characterizing the anteromedial (AM) and posterolateral (PL) bundles' elastic and viscoelastic properties and relate them to knee joint OA. Small dogbone-shaped samples were cut from mid-substance of AM and PL bundles of human knees (n = 18 knees, N = 9 cadavers) and subjected to tensile sinusoidal and multi-step stress-relaxation testing.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Discovering chemical reaction pathways using quantum mechanics is impractical for many systems of practical interest because of unfavorable scaling and computational cost. While machine learning interatomic potentials (MLIPs) trained on quantum mechanical data offer a promising alternative, they face challenges for reactive systems due to the need for extensive sampling of the potential energy surface in regions that are far from equilibrium geometries. Unfortunately, traditional MLIP training protocols are not designed for comprehensive reaction exploration.
View Article and Find Full Text PDFMath Biosci Eng
July 2025
Department of Mathematics and Applied Mathematics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa.
In this paper, we present a deterministic model for the population dynamics of HIV/AIDS, wherein some individuals at the severe symptomatic phase of HIV develop serious opportunistic infections (OIs) such cryptococcal, tuberculous, pneumococcal, and other bacterial meningitis due to an inappropriate treatment or lack of counseling. OIs are responsible for significant mortality and disability on individuals with HIV in many countries. Cryptococcal meningitis (CM) is among frequent OIs responsible for significant mortality and disability of individuals with HIV in limited resource settings.
View Article and Find Full Text PDF