Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Purpose: K 1.3 channels are expressed in vascular smooth muscle cells (VSMCs), where they contribute to proliferation rather than contraction and participate in vascular remodelling. K 1.3 channels are also expressed in macrophages, where they assemble with K 1.5 channels (K 1.3/K 1.5), whose activation generates a K current. In macrophages, the K 1.3/K 1.5 ratio is increased by classical activation (M1). Whether these channels are involved in angiotensin II (AngII)-induced vascular remodelling, and whether they can modulate the macrophage phenotype in hypertension, remains unknown. We characterized the role of K 1.3 channels in vascular damage in hypertension.

Experimental Approach: We used AngII-infused mice treated with two selective K 1.3 channel inhibitors (HsTX[R14A] and [EWSS]ShK). Vascular function and structure were measured using wire and pressure myography, respectively. VSMC and macrophage electrophysiology were studied using the patch-clamp technique; gene expression was analysed using RT-PCR.

Key Results: AngII increased K 1.3 channel expression in mice aorta and peritoneal macrophages which was abolished by HsTX[R14A] treatment. K 1.3 inhibition did not prevent hypertension, vascular remodelling, or stiffness but corrected AngII-induced macrophage infiltration and endothelial dysfunction in the small mesenteric arteries and/or aorta, via a mechanism independent of electrophysiological changes in VSMCs. AngII modified the electrophysiological properties of peritoneal macrophages, indicating an M1-like activated state, with enhanced expression of proinflammatory cytokines that induced endothelial dysfunction. These effects were prevented by K 1.3 blockade.

Conclusions And Implications: We unravelled a new role for K 1.3 channels in the macrophage-dependent endothelial dysfunction induced by AngII in mice which might be due to modulation of macrophage phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1111/bph.15407DOI Listing

Publication Analysis

Top Keywords

endothelial dysfunction
16
vascular remodelling
12
macrophage-dependent endothelial
8
channels expressed
8
macrophage phenotype
8
role channels
8
peritoneal macrophages
8
channels
7
vascular
6
channels novel
4

Similar Publications

Airway obstruction and gender affect arterial stiffness in children with cystic fibrosis.

Turk J Pediatr

September 2025

Department of Cardiorespiratory Physiotherapy and Rehabilitation, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Türkiye.

Background: Vascular changes are observed in children with cystic fibrosis (cwCF), and gender-specific differences may impact arterial stiffness. We aimed to compare arterial stiffness and clinical parameters based on gender in cwCF and to determine the factors affecting arterial stiffness in cwCF.

Methods: Fifty-eight cwCF were included.

View Article and Find Full Text PDF

Problem: Preeclampsia (PE) is a leading cause of perinatal maternal and fetal mortality. Clinical and pathological studies suggest that placental and decidual cell dysfunction may contribute to this condition. However, the pathogenesis of PE remains poorly understood.

View Article and Find Full Text PDF

Sorting nexin 3 promotes ischemic retinopathy through RIP1- and RIP3-mediated myeloid cell necroptosis and mitochondrial fission.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug De

Proliferative retinopathy is a leading cause of irreversible blindness in humans; however, the molecular mechanisms behind the immune cell-mediated retinal angiogenesis remain poorly elucidated. Here, using single-cell RNA sequencing in an oxygen-induced retinopathy (OIR) model, we identified an enrichment of sorting nexin (SNX)-related pathways, with SNX3, a member of the SNX family that is involved in endosomal sorting and trafficking, being significantly upregulated in the myeloid cell subpopulations of OIR retinas. Immunostaining showed that SNX3 expression is markedly increased in the retinal microglia/macrophages of mice with OIR, which is mainly located within and around the neovascular tufts.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

Exploring LRP-1 in the liver-brain axis: implications for Alzheimer's disease.

Mol Biol Rep

September 2025

Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.

Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.

View Article and Find Full Text PDF