Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SARS-CoV-2 genetic material is detectable in the faeces of a considerable part of COVID-19 cases and hence, in municipal wastewater. This fact was confirmed early during the spread of the COVID-19 pandemic and prompted several studies that proposed monitoring its incidence by wastewater. This paper studies the fate of SARS-CoV-2 genetic material in wastewater treatment plants using RT-qPCR with a two-fold goal: i) to check its presence in the water effluent and in the produced sludge and ii) based on the understanding of the virus particles fate, to identify the most suitable spots for detecting the incidence of COVID-19 and monitor its evolution. On the grounds of the affinity of enveloped virus towards biosolids, we hypothesized that the sludge line acts as a concentrator of SARS-CoV-2 genetic material. Sampling several spots in primary, secondary and sludge treatment at the Ourense (Spain) WWTP in 5 different days showed that, in effect, most of SARS-CoV-2 particles cannot be detected in the water effluent as they are retained by the sludge line. We identified the sludge thickener as a suitable spot for detecting SARS-CoV-2 particles thanks to its higher solids concentration (more virus particles) and longer residence time (less sensitive to dilution caused by precipitation). These findings could be useful to develop a suitable strategy for early warning of COVID-19 incidence based on WWTP monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7980226PMC
http://dx.doi.org/10.1016/j.scitotenv.2021.145268DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 genetic
12
genetic material
12
fate sars-cov-2
8
suitable spot
8
water effluent
8
virus particles
8
sars-cov-2 particles
8
sludge
6
covid-19
5
sars-cov-2
5

Similar Publications

The COVID-19 pandemic, caused by the continuously evolving SARS-CoV-2 virus, has presented persistent global health challenges. As novel variants emerge, many with enhanced transmissibility and immune evasion capabilities, concerns have intensified regarding the efficacy of existing vaccines and therapeutics. This review provides a comprehensive overview of the current landscape of COVID-19 vaccination, including the development and performance of monovalent and bivalent boosters, and examines their effectiveness against newly emerging variants of interest (VOIs) and variants under monitoring (VUMs), such as JN.

View Article and Find Full Text PDF

The COVID-19 pandemic brought unprecedented global challenges. Amid the crisis, the potential impact of COVID-19 exposure on the neurodevelopment of offspring born to infected mothers emerged as a critical concern. This is a prospective cohort study of pregnant women and their offspring enrolled in the Signature project at Hospital Universitario Virgen del Rocio in Seville, Spain, between 01/01/2024 and 08/31/2022.

View Article and Find Full Text PDF

Unlabelled: There is a need for the development of broad-spectrum antiviral compounds that can act as first-line therapeutic countermeasures to emerging viral infections. Host-directed approaches present a promising avenue of development and carry the benefit of mitigating risks of viral escape mutants. We have previously found the SKI (super killer) complex to be a broad-spectrum, host-target with our lead compound ("UMB18") showing activity against influenza A virus, coronaviruses, and filoviruses.

View Article and Find Full Text PDF

Expression of metabolic genes in NK cells is associated with clinical outcomes in patients with severe COVID-19: a brief report.

Front Cell Infect Microbiol

September 2025

Universidad Autónoma de Nuevo León, Servicio y Departamento de Inmunología, Facultad de Medicina, Monterrey, NL, Mexico.

Natural killer (NK) cells are innate lymphocytes with cytotoxic activity against tumors and viruses. The pandemic of the coronavirus disease 2019 (COVID-19) has increased the investigation of their role in disease severity. However, their functional status and modulators remain controversial.

View Article and Find Full Text PDF

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF