98%
921
2 minutes
20
Aims: The aortic valve (AV) neocuspidization (Ozaki procedure) is a novel surgical technique for AV disease that preserves the natural motion and cardiodynamics of the aortic root. In this study, we sought to evaluate, by 4D-flow magnetic resonance imaging, the aortic blood flow characteristics after AV neocuspidization in paediatric patients.
Methods And Results: Aortic root and ascending aorta haemodynamics were evaluated in a population of patients treated with the Ozaki procedure; results were compared with those of a group of patients operated with the Ross technique. Cardiovascular magnetic resonance studies were performed at 1.5 T using a 4D flow-sensitive sequence acquired with retrospective electrocardiogram-gating and respiratory navigator. Post-processing of 4D-flow analysis was performed to calculate flow eccentricity and wall shear stress. Twenty children were included in this study, 10 after Ozaki and 10 after Ross procedure. Median age at surgery was 10.7 years (range 3.9-16.5 years). No significant differences were observed in wall shear stress values measured at the level of the proximal ascending aorta between the two groups. The analysis of flow patterns showed no clear association between eccentric flow and the procedure performed. The Ozaki group showed just a slightly increased transvalvular maximum velocity.
Conclusion: Proximal aorta flow dynamics of children treated with the Ozaki and the Ross procedure are comparable. Similarly to the Ross, Ozaki technique restores a physiological laminar flow pattern in the short-term follow-up, with the advantage of not inducing a bivalvular disease, although further studies are warranted to evaluate its long-term results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787994 | PMC |
http://dx.doi.org/10.1093/ehjci/jeab009 | DOI Listing |
Genet Med
September 2025
Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Fulham Road, London, UK. Electronic address:
Purpose: Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) is a rare cancer susceptibility syndrome exclusively attributable to pathogenic variants in FH (HGNC:3700). This paper quantitatively weights the phenotypic context (PP4/PS4) of such very rare variants in FH.
Methods: We collated clinical diagnostic testing data on germline FH variants from 387 individuals with HLRCC and 1,780 individuals with renal cancer, and compared the frequency of 'very rare' variants in each phenotypic cohort against 562,295 population controls.
Eur J Radiol
September 2025
Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
Rationale/objectives: Image-based vascular biomarkers may help expedite evaluation of chronic thromboembolic pulmonary hypertension (CTEPH), which remains difficult to diagnose despite available effective therapies. We sought to determine if vascular heterogeneity and central redistribution on chest CT differed between CTEPH, pulmonary arterial hypertension (PAH), and control groups.
Materials/methods: We retrospectively included 108 patients who underwent right heart catheterization and chest CT (2011-2018).
Can J Ophthalmol
September 2025
Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States. Electronic address:
Objective: To describe observed intraocular pressure (IOP) changes following vitrectomy (PPV) surgery and PPV combined with phacoemulsification in eyes with and without glaucoma.
Methods: A total of 20,894 patients from the American Academy of Ophthalmology IRIS® Registry (Intelligent Research in Sight) who underwent vitrectomy surgery for epiretinal membrane or vitreous opacities from January 2016 to March 2023 were included. Mean IOPs from postoperative day 1, days 2-10, days 11-30, and then monthly through 6 months were compared to baseline.
Nucl Med Biol
September 2025
Department of Nuclear Medicine, Hannover Medical School, Germany. Electronic address:
Purpose: The liver-brain axis regulates metabolic homeostasis, with glucose metabolism playing a key role. Liver dysfunction, such as fibrosis, may impact brain metabolism and consequently, brain function. Positron emission tomography (PET) imaging provides a non-invasive approach to study glucose metabolism in both organs.
View Article and Find Full Text PDFBr Dent J
September 2025
Professor of Dental Education, Newcastle University, United Kingdom.
Introduction and aim NHS primary care dentistry is facing a workforce crisis. Education and training opportunities have been suggested as an approach to improve retention. This review aims to summarise the literature available on educational interventions and their impact on primary healthcare workforce retention.
View Article and Find Full Text PDF