98%
921
2 minutes
20
Background: Adverse drug reactions (ADRs) are an important concern in the medication process and can pose a substantial economic burden for patients and hospitals. Because of the limitations of clinical trials, it is difficult to identify all possible ADRs of a drug before it is marketed. We developed a new model based on data mining technology to predict potential ADRs based on available drug data.
Method: Based on the Word2Vec model in Nature Language Processing, we propose a new knowledge graph embedding method that embeds drugs and ADRs into their respective vectors and builds a logistic regression classification model to predict whether a given drug will have ADRs.
Result: First, a new knowledge graph embedding method was proposed, and comparison with similar studies showed that our model not only had high prediction accuracy but also was simpler in model structure. In our experiments, the AUC of the classification model reached a maximum of 0.87, and the mean AUC was 0.863.
Conclusion: In this paper, we introduce a new method to embed knowledge graph to vectorize drugs and ADRs, then use a logistic regression classification model to predict whether there is a causal relationship between them. The experiment showed that the use of knowledge graph embedding can effectively encode drugs and ADRs. And the proposed ADRs prediction system is also very effective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863488 | PMC |
http://dx.doi.org/10.1186/s12911-021-01402-3 | DOI Listing |
PLoS One
September 2025
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, China.
Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Health Sciences, Università del Piemonte Orientale UPO, Corso Trieste 15/A, 28100, Novara, Italy.
A Python-scripted software tool has been developed to help study the heterogeneity of gene changes, markedly or moderately expressed, when several experimental conditions are compared. The analysis workflow encloses a scorecard that groups genes based on relative fold-change and statistical significance, providing additional functions that facilitate knowledge extraction. The scorecard reports highlight unique patterns of gene regulation, such as genes whose expression is consistently up- or down-regulated across experiments, all of which are supported by graphs and summaries to characterize the dataset under investigation.
View Article and Find Full Text PDFNucleic Acids Res
September 2025
School of Software, Shandong University, Jinan 250101, Shandong, China.
Spatial transcriptomics (ST) reveals gene expression distributions within tissues. Yet, predicting spatial gene expression from histological images still faces the challenges of limited ST data that lack prior knowledge, and insufficient capturing of inter-slice heterogeneity and intra-slice complexity. To tackle these challenges, we introduce FmH2ST, a foundation model-based method for spatial gene expression prediction.
View Article and Find Full Text PDFIEEE Trans Comput Biol Bioinform
September 2025
Artificial intelligence (AI) based anticancer drug recommendation systems have emerged as powerful tools for precision dosing. Although existing methods have advanced in terms of predictive accuracy, they encounter three significant obstacles, including the "black-box" problem resulting in unexplainable reasoning, the computational difficulty for graphbased structures, and the combinatorial explosion during multistep reasoning. To tackle these issues, we introduce a novel Macro-Micro agent Drug sensitivity inference (MarMirDrug).
View Article and Find Full Text PDFBioinformatics
September 2025
Centre National de Recherche en Génomique Humaine, Institut François Jacob CEA Université Paris-Saclay.
Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.
View Article and Find Full Text PDF