98%
921
2 minutes
20
The actively heated fiber optics (AHFO) technique has the potential to measure soil water at high spatial and temporal resolutions, and thus it can bridge the measurement gap from point to large scales. However, the availability of power might restrict its use, since high power is required to heat long fiber optic cables under field conditions; this can be a challenge for long-term soil water monitoring under field conditions. This study investigated the performance of different heating strategies (power intensity and heating duration) on soil water measurement by the AHFO technique on three different textured soils. Different heating strategies: high power-short pulses (20 Wm-3 min), low power-short pulses (10 Wm-3 min, 5 Wm-3 min, 2.5 Wm-3 min) and low power-long pulses (10 Wm-5 min, 5 Wm-10 min, 2.5 Wm-15 min) were tested using laboratory soil columns. The study compared the sensitivity of the thermal response, NT to volumetric water content (VWC) and the predictive error of different heating strategies and soils. Results of this study showed that the sensitivity of NT increased and the predictive error decreased with increasing power intensity, irrespective of the soil type. Low power-short heat pulses such as 5 Wm-3 min and 2.5 Wm-3 min produced high predictive errors, RMSE of 5-6% and 6-7%, respectively. However, extending the heating duration was effective in reducing the error for both 10 and 5 Wm power intensities, but not for the 2.5 Wm. The improvement was particularly noticeable in 5 Wm -10 min; it reduced the RMSE by 1.5% (sand and clay loam) and 2.73% (sandy loam). Overall, the results of this study suggested that extending the heating duration of 10 and 5 Wm power intensities can improve the sensitivity of the thermal response and predictive accuracy of the estimated soil water content (SWC). The results are particularly important for field applications of the AHFO technique, which can be limited by the availability of high power, which restricts the use of 20 Wm. For example, 5 Wm-10 min improved the predictive accuracy to 3-4%, which has the potential to be used for validating soil water estimations at satellite footprint scales. However, the effects of diurnal temperature variations should also be considered, particularly when using low power intensity such as 5 Wm in surface soils under field conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867044 | PMC |
http://dx.doi.org/10.3390/s21030962 | DOI Listing |
Sci Total Environ
September 2025
School of Civil Engineering, Sichuan Agricultural University, Chengdu, 611830, China; Sichuan Higher Education Engineering Research Center for Disaster Prevention and Mitigation of Village Construction, Sichuan Agricultural University, Chengdu, 611830, China.
Biochar has emerged as a promising soil amendment for improving soil quality and mitigating environmental impacts, such as nutrient leaching. This study evaluated the impacts of ball-milled bamboo nano-biochar on water infiltration dynamics, retention capacity, and nitrogen‑phosphorus leaching in sandy loam soil using controlled column experiments and leaching experiments with five application doses alongside bulk biochar and untreated controls. Experimental results demonstrated that nano-biochar application significantly enhanced soil water retention capacity compared to the raw soil.
View Article and Find Full Text PDFWater Res
September 2025
Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang, 050061, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geosciences, Shijiazhuang, 050061, China.
Groundwater nitrate (NO) and sulfate (SO) pollution in semi-arid regions has attracted widespread attention. However, unveiling the dynamics and sources of NO and SO in regional groundwater is challenging because of complex anthropogenic activities and hydrogeological conditions. This study combined physicochemistry and multiple stable isotopes (δH-HO, δO-HO, δN-NO, δO-NO, δS-SO, and δO-SO) to explore the spatiotemporal patterns, driving factors, sources, and potential health hazards of NO and SO in groundwater on the Loess Plateau, China.
View Article and Find Full Text PDFJ Environ Manage
September 2025
School of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing, Jiangsu, 210023, China. Electronic address:
As climate change, urbanization, and marine exploitation intensify, understanding nearshore island ecosystem services (IESs) is essential for ensuring ecological protection and sustainable development. This study maps the spatiotemporal dynamics of six key ecosystem services (ESs) across 295 nearshore Chinese islands, including food production (FP), water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ) (2000-2022), and tourism and recreation (TR) (2012-2022). Using spatial autocorrelation, Slope trend analysis, per-pixel Pearson correlation, and K-means clustering, the study quantifies the trade-offs and synergies, identifies constraint characteristics, and delineates ecological functional zones for island classification.
View Article and Find Full Text PDFJ Trace Elem Med Biol
September 2025
Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków 31-343, Poland. Electronic address:
Vanadium (V) is a trace element in the environment; it is detected in soil, water, air, dust, and food products. V-containing compounds have shown therapeutic potential in the treatment of diabetes. However, studies on the effects of V on animal behavior remain limited and sporadic.
View Article and Find Full Text PDFEnviron Technol
September 2025
College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China.
The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.
View Article and Find Full Text PDF