98%
921
2 minutes
20
Aims: To prevent Alzheimer's disease (AD) from progressing to dementia, early prediction and classification of AD are important and they play a crucial role in medical image analysis.
Background: In this study, we employed a transfer learning technique to classify magnetic resonance (MR) images using a pre-trained convolutional neural network (CNN).
Objective: To address the early diagnosis of AD, we employed a computer-assisted technique, specifically the deep learning (DL) model, to detect AD.
Methods: In particular, we classified Alzheimer's disease (AD), mild cognitive impairment (MCI), and normal control (NC) subjects using whole slide two-dimensional (2D) images. To illustrate this approach, we made use of state-of-the-art CNN base models, i.e., the residual networks Res- Net-101, ResNet-50, and ResNet-18, and compared their effectiveness in identifying AD. To evaluate this approach, an AD Neuroimaging Initiative (ADNI) dataset was utilized. We also showed uniqueness by using MR images selected only from the central slice containing left and right hippocampus regions to evaluate the models.
Results: All three models used randomly split data in the ratio of 70:30 for training and testing. Among the three, ResNet-101 showed 98.37% accuracy, better than the other two ResNet models, and performed well in multiclass classification. The promising results emphasize the benefit of using transfer learning, specifically when the dataset is low.
Conclusion: From this study, we know that transfer learning helps to overcome DL problems mainly when the data available is insufficient to train a model from scratch. This approach is highly advantageous in medical image analysis to diagnose diseases like AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1573405617666210127161812 | DOI Listing |
JMIR Res Protoc
September 2025
Department of Urology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, Indonesia.
Background: Circumcision is a widely practiced procedure with cultural and medical significance. However, certain penile abnormalities-such as hypospadias or webbed penis-may contraindicate the procedure and require specialized care. In low-resource settings, limited access to pediatric urologists often leads to missed or delayed diagnoses.
View Article and Find Full Text PDFJ Chem Inf Model
September 2025
Department of Chemistry, Delaware State University, Dover, Delaware 19901, United States.
The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.
View Article and Find Full Text PDFJ Cataract Refract Surg
July 2025
Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu City, Sichuan Province, China.
Purpose: To develop and validate a multimodal deep-learning model for predicting postoperative vault height and selecting implantable collamer lens (ICL) sizes using Anterior Segment Optical Coherence Tomography (AS-OCT) and Ultrasound Biomicroscope (UBM) images combined with clinical features.
Setting: West China Hospital of Sichuan University, China.
Design: Deep-learning study.
JMIR Med Inform
September 2025
College of Medical Informatics, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China, 86 13500303273.
Background: Cirrhosis is a leading cause of noncancer deaths in gastrointestinal diseases, resulting in high hospitalization and readmission rates. Early identification of high-risk patients is vital for proactive interventions and improving health care outcomes. However, the quality and integrity of real-world electronic health records (EHRs) limit their utility in developing risk assessment tools.
View Article and Find Full Text PDFJMIR AI
September 2025
Faculty of Medicine, Universidade Federal de Alagoas, Av. Lourival Melo Mota, S/n - Tabuleiro do Martins, Maceió, 57072-900, Brazil, 558232141461.
Background: Artificial intelligence (AI) has the potential to transform global health care, with extensive application in Brazil, particularly for diagnosis and screening.
Objective: This study aimed to conduct a systematic review to understand AI applications in Brazilian health care, especially focusing on the resource-constrained environments.
Methods: A systematic review was performed.