Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The present study aimed to investigate the potential of nanospanlastics for boosting the bioavailability of epigallocatechin gallate‎ (EGCG). EGCG has valuable effects like anti-inflammation, anti-oxidation, and anti-tumorigenesis. Unfortunately, it has a low oral bioavailability due to its limited permeation and poor stability. To overcome these pitfalls, EGCG was fabricated as a nanospanlastic. Nanospanlastics are flexible nanovesicles that are composed of surfactants and edge activators (EAs). EAs improve the deformability of spanlastics by acting as a destabilizing factor of their vesicular membranes. EGCG-loaded spanlastics were prepared by an ethanol injection method, according to 2 factorial design, to explore the impact of different independent variables on entrapment efficiency (EE%), % drug released after 12 h (Q), and particle size (PS). In vitro characterization, ex vivo intestinal permeation test, and pharmacokinetic study of the optimized formula were performed. A newly developed RP-HPLC technique was adopted ‎for the estimation of EGCG‎. The optimized formula (F4) demonstrated more prolonged drug release and a significant improvement in the EE%, permeability, deformability and stability than the corresponding niosomes. The pharmacokinetic study investigated that F4 had a more sustained drug release and a higher bioavailability than the conventional niosomes and free drugs. Nanospanlastics could be a promising approach for improving the bioavailability of EGCG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831059PMC
http://dx.doi.org/10.3390/ph14010068DOI Listing

Publication Analysis

Top Keywords

improving bioavailability
8
pharmacokinetic study
8
optimized formula
8
drug release
8
bioavailability
5
formulation optimization
4
nanospanlastics
4
optimization nanospanlastics
4
nanospanlastics improving
4
bioavailability green
4

Similar Publications

Background: Recent advances in high-throughput sequencing technologies have enabled the collection and sharing of a massive amount of omics data, along with its associated metadata-descriptive information that contextualizes the data, including phenotypic traits and experimental design. Enhancing metadata availability is critical to ensure data reusability and reproducibility and to facilitate novel biomedical discoveries through effective data reuse. Yet, incomplete metadata accompanying public omics data may hinder reproducibility and reusability and limit secondary analyses.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

This review examines the chemical and ecological interactions between filter-feeding mussels and the green macroalga Ulva prolifera in integrated multi-trophic aquaculture (IMTA) systems. Mussels are crucial for nutrient recycling, as they filter water and release bioavailable compounds such as ammonium (NH), urea (CO(NH)), and dissolved organic matter (DOM). These compounds promote Ulva growth and enhance microbial activity.

View Article and Find Full Text PDF

Resolve and regulate: Alum nanoplatform coordinating STING availability and agonist delivery for enhanced anti-tumor immunotherapy.

Biomaterials

September 2025

Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China. Electronic address:

The stimulator of interferon genes (STING) pathway represents a promising target in cancer immunotherapy. However, the clinical translation of cyclic dinucleotide (CDN)-based STING agonists remains hindered by insufficient formation of functional CDN-STING complexes. This critical bottleneck arises from two interdependent barriers: inefficient cytosolic CDN delivery and tumor-specific STING silencing via DNA methyltransferase-mediated promoter hypermethylation.

View Article and Find Full Text PDF

Background: Chronic constriction injury (CCI) of the sciatic nerve induces neuropathic pain, inflammation, oxidative stress, and neurodegenerative changes, impairing sensory and emotional function. While curcumin is well recognized for its anti-inflammatory and neuroprotective properties, its therapeutic use is limited by poor bioavailability. Curcumin liposomal nanoparticles (CLNs) offer improved delivery and stability.

View Article and Find Full Text PDF