Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The aggregation of mesenchymal stem cells (MSCs) into three-dimensional (3D) spheroids has emerged as a promising therapeutic candidate for the treatment of a variety of diseases. In spite of the numerous 3D culture methods suggested recently for MSC spheroid generation, it is still elusive to fully reflect real stem cell niches; this effort majorly suffers from a lack of cell-extracellular matrix (ECM) interactions within the 3D spheroids. In this study, we develop a simple but versatile method for generating human MSC (hMSC) spheroids by culturing the cells on a functional polymer film surface, poly(2,4,6,8-tetravinyl-2,4,6,8-tetramethyl cyclotetrasiloxane) (pV4D4). Interestingly, the pV4D4-coated surface allows a dynamic cell adhesion to the polymer surface while developing the formation of 3D spheroids. The corresponding mechanotransduction promotes the expression of the endogenous ECM and, in turn, results in a remarkable improvement in self-renewal abilities, pro-angiogenic potency, and multilineage differentiation capabilities. This observation highlights the significance of our method compared to the conventional spheroid-generating methods in terms of recreating the ECM-rich microenvironment. We believe the developed surface can serve as a versatile but reliable method for stem cell-based tissue engineering and regenerative medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.9b01738 | DOI Listing |