Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The analysis of fish behavior in response to odor stimulation is a crucial component of the general study of cross-modal sensory integration in vertebrates. In zebrafish, the centrifugal pathway runs between the olfactory bulb and the neural retina, originating at the terminalis neuron in the olfactory bulb. Any changes in the ambient odor of a fish's environment warrant a change in visual sensitivity and can trigger mating-like behavior in males due to increased GnRH signaling in the terminalis neuron. Behavioral experiments to study this phenomenon are commonly conducted in a controlled environment where a video of the fish is recorded over time before and after the application of chemicals to the water. Given the subtleties of behavioral change, trained biologists are currently required to annotate such videos as part of a study. This process of manually analyzing the videos is time-consuming, requires multiple experts to avoid human error/bias and cannot be easily crowdsourced on the Internet. Machine learning algorithms from computer vision, on the other hand, have proven to be effective for video annotation tasks because they are fast, accurate, and, if designed properly, can be less biased than humans. In this work, we propose to automate the entire process of analyzing videos of behavior changes in zebrafish by using tools from computer vision, relying on minimal expert supervision. The overall objective of this work is to create a generalized tool to predict animal behaviors from videos using state-of-the-art deep learning models, with the dual goal of advancing understanding in biology and engineering a more robust and powerful artificial information processing system for biologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806584PMC
http://dx.doi.org/10.1038/s41598-020-79772-3DOI Listing

Publication Analysis

Top Keywords

computer vision
12
fish behavior
8
behavior response
8
ambient odor
8
olfactory bulb
8
terminalis neuron
8
analyzing videos
8
assistive computer
4
vision tool
4
tool automatically
4

Similar Publications

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF

Computer vision has been identified as one of the solutions to bridge communication barriers between speech-impaired populations and those without impairment as most people are unaware of the sign language used by speech-impaired individuals. Numerous studies have been conducted to address this challenge. However, recognizing word signs, which are usually dynamic and involve more than one frame per sign, remains a challenge.

View Article and Find Full Text PDF

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

OpenML is an open-source platform that democratizes machine-learning evaluation by enabling anyone to share datasets in uniform standards, define precise machine-learning tasks, and automatically share detailed workflows and model evaluations. More than just a platform, OpenML fosters a collaborative ecosystem where scientists create new tools, launch initiatives, and establish standards to advance machine learning. Over the past decade, OpenML has inspired over 1,500 publications across diverse fields, from scientists releasing new datasets and benchmarking new models to educators teaching reproducible science.

View Article and Find Full Text PDF