Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: To quantify the heterogeneity of fibrosis boundaries in idiopathic pulmonary fibrosis (IPF) using the Gaussian curvature analysis for evaluating disease severity and predicting survival.

Methods: We retrospectively included 104 IPF patients and 52 controls who underwent baseline chest CT scans. Normal lungs below - 500 HU were segmented, and the boundary was three-dimensionally reconstructed using in-house software. Gaussian curvature analysis provided histogram features on the heterogeneity of the fibrosis boundary. We analyzed the correlations between histogram features and the gender-age-physiology (GAP) and CT fibrosis scores. We built a regression model to predict diffusing capacity of carbon monoxide (DLCO) using the histogram features and calculated the modified GAP (mGAP) score by replacing DLCO with the predicted DLCO. The performances of the GAP, CT-GAP, and mGAP scores were compared using 100 repeated random-split sets.

Results: Patients with moderate-to-severe IPF had more numerous Gaussian curvatures at the fibrosis boundary, lower uniformity, and lower 10th to 30th percentiles of Gaussian curvature than controls or patients with mild IPF (all p < 0.0033). The 20th percentile was most significantly correlated with the GAP score (r = - 0.357; p < 0.001) and the CT fibrosis score (r = - 0.343; p = 0.001). More numerous Gaussian curvatures, higher entropy, lower uniformity, and 10th to 30th percentiles (p < 0.001-0.041) were associated with mortality. The mGAP score was comparable to the GAP and CT-GAP scores for survival prediction (mean C-indices, 0.76 vs. 0.79 vs. 0.77, respectively).

Conclusions: Gaussian curvatures of fibrosis boundaries became more heterogeneous as the disease progressed, and heterogeneity was negatively associated with survival in IPF.

Key Points: • Gaussian curvature of the fibrotic lung boundary was more heterogeneous in patients with moderate-to-severe IPF than those with mild IPF or normal controls. • The 20th percentile of the Gaussian curvature of the fibrosis boundary was linearly correlated with the GAP score and the CT fibrosis score. • A modified GAP score that replaced the diffusing capacity of carbon monoxide with a composite measure using histogram features of the Gaussian curvature of the fibrosis boundary showed a comparable ability to predict survival to both the GAP and the CT-GAP score.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804589PMC
http://dx.doi.org/10.1007/s00330-020-07594-yDOI Listing

Publication Analysis

Top Keywords

gaussian curvature
24
histogram features
16
fibrosis boundary
16
fibrosis
12
heterogeneity fibrosis
12
fibrosis boundaries
12
gap ct-gap
12
gaussian curvatures
12
gap score
12
gaussian
9

Similar Publications

Three-dimensional optical path extended gourd-type photoacoustic cell for highly sensitive trace acetylene sensing.

Photoacoustics

October 2025

Hubei Key Laboratory of Intelligent Wireless Communications, Hubei Engineering Research Center of Intelligent IOT technology, College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.

A novel gourd-type photoacoustic cell (GTPAC) has been developed, featuring a highly reflective, polished gold film-coated inner wall that minimizes optical loss and maximizes light utilization efficiency. GTPAC integrates two coupled spherical chambers with a radius ratio 2:3, which is close to the golden ratio. Its unique Gaussian curvature distribution enables multi-directional, disordered light beam reflection without complex optical alignment.

View Article and Find Full Text PDF

Introduction: The Anterior Communicating Artery complex (AComA) is one of the most common intracranial aneurysms locations. Accurate rupture risk assessment in patients with cerebral aneurysms is essential for optimizing treatment decisions. Computational fluid dynamics has significantly advanced insight into aneurysmal hemodynamics.

View Article and Find Full Text PDF

Hydrophilicity and topology interplay determines positioning of guest molecules in lipid cubic phases.

J Colloid Interface Sci

August 2025

Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland; Department of Materials, ETH Zurich, Zurich 8092, Switzerland. Electronic address:

Lipid nanostructures with inverse bicontinuous cubic symmetries are of paramount importance as delivery structures of active compounds in the pharmaceutical, cosmetic and food science fields. By atomistic molecular dynamics, here we study the internalization of three molecules of varying hydrophilicity, fructose, caffeine and vitamin D, within a cubic phase with primitive symmetry, allowing us to assess how the incorporation of the guest molecule is affected by the interplay between its hydrophilicity and the topology of the host membrane. For lipophilic molecules our results reveal the details of molecular localization and orientation, which allow estimating the bending modulus of the membrane by means of a phenomenological model based on the physics of liquid crystals.

View Article and Find Full Text PDF

: The objective of this study was to evaluate changes in anatomical point position, cranio-cervical posture, and respiratory dimensions following conventional bimaxillary total prosthetic rehabilitation. A prospective, longitudinal, observational, analytical study was conducted on 12 patients, aged 55 to 75 years, at the Department of Dental Prosthetics at the University of Medicine and Pharmacy in Cluj-Napoca. All patients had complete bimaxillary edentulism and received removable dentures as treatment.

View Article and Find Full Text PDF

Cell membrane remodelling during key processes such as endocytosis, exocytosis, pore formation, and cell division involves large changes in the curvature, which are governed by bending, Gaussian and tilt moduli. While bending rigidity has been extensively studied, it has been a major challenge to experimentally measure Gaussian and tilt moduli due to fundamental limitations imposed by the Gauss-Bonnet theorem on closed membranes and the nanometric size of the constituents. We address these issues by studying a fluid monolayer model membrane consisting of aligned, micron-length rod-like particles, known as colloidal membranes.

View Article and Find Full Text PDF