A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Application of an emission profile-based method to trace the sources of volatile organic compounds in a chemical industrial park. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The accurate source tracing of volatile organic compounds (VOCs) in complicated source environments is challenging to perform, as similar pollutants may be emitted from different chemical processes. An emission profile-based source tracing method, based on comparing similarities between source profiles and ambient air profiles, was evaluated, and was found to improve the tracing efficiency. Emission profiles were acquired from a typical chemical industrial park in the Yangtze River Delta, China. A total of 30 process-based emission profiles comprising 107 VOC species were investigated and similarities among them were calculated. This analysis demonstrated that the similarities between emissions from various chemical processes are universal. Source tracing was then conducted for six air pollution episodes, based on the emission profile-based source tracing method combined with wind speed and direction data. The results showed that the proposed approach represents an efficient method for source tracing. This study enriches the database of source profiles for petroleum-related industries. The emission profiles from references and the air pollution episodes augment the emission profile database, especially under abnormal emission conditions. The database will more effectively serve future source-tracing cases, creating a virtuous circle that improves source tracing efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144694DOI Listing

Publication Analysis

Top Keywords

source tracing
24
emission profile-based
12
emission profiles
12
source
9
volatile organic
8
organic compounds
8
chemical industrial
8
industrial park
8
chemical processes
8
profile-based source
8

Similar Publications