Design and Optimization of Quinazoline Derivatives: New Non-nucleoside Inhibitors of Bovine Viral Diarrhea Virus.

Front Chem

Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra Virología, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Universidad de Buenos Aires, Buenos Aires, Argentina.

Published: December 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bovine viral diarrhea virus (BVDV) belongs to the genus (). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, -(2-morpholinoethyl)-2-phenylquinazolin-4-amine [, 50% effective concentration (EC) = 9.7 ± 0.5 μM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (; EC = 1.7 ± 0.4 μM) for further analysis. Compound was found to inhibit the replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7793975PMC
http://dx.doi.org/10.3389/fchem.2020.590235DOI Listing

Publication Analysis

Top Keywords

non-nucleoside inhibitors
8
bovine viral
8
viral diarrhea
8
diarrhea virus
8
bvdv rdrp
8
viral
5
design optimization
4
optimization quinazoline
4
quinazoline derivatives
4
derivatives non-nucleoside
4

Similar Publications

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Background: Overweight and obesity are major concerns among people living with HIV (PLWH), particularly those on integrase inhibitors, as they elevate the risk of cardiovascular diseases. However, longitudinal data on the burden and risk factors for overweight/obesity in sub-Saharan Africa (SSA) remain limited. This study aimed to estimate the incidence and identify factors associated with overweight and obesity among PLWH who switched to a dolutegravir (DTG)-based ART regimen at Livingstone University Teaching Hospital.

View Article and Find Full Text PDF

Introduction: Monitoring transmitted drug resistance is crucial for guiding first-line antiretroviral therapy (ART) and controlling the rising HIV epidemic in Türkiye. This study aimed to determine the prevalence of transmitted antiretroviral resistance to protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), integrase strand transfer inhibitors (INSTIs) and capsid assembly inhibitors (CAIs). We also assessed the distribution of HIV-1 subtypes and circulating recombinant forms (CRFs) at one of the main national referral centres in Türkiye.

View Article and Find Full Text PDF

Discovery, Optimization, and Evaluation of Non-Nucleoside SARS-CoV-2 NSP14 Inhibitors.

J Med Chem

September 2025

Sanders Tri-Institutional Therapeutics Discovery Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States.

We recently reported the discovery of TDI-015051, a first-in-class small-molecule inhibitor of the SARS-CoV-2 guanine-N7 methyltransferase nonstructural protein 14 (NSP14). NSP14 plays a critical role in viral RNA cap synthesis and its inhibition represents a novel antiviral approach. Utilizing systematic structure-activity relationship studies, potent non-nucleoside-based inhibitors with single-digit nanomolar cellular activity were identified from an HTS hit lacking cellular activity.

View Article and Find Full Text PDF

A strategy to functionally cure AIDS by eliminating latent HIV-1 reservoirs involves non-nucleoside reverse transcriptase inhibitors (NNRTIs) that promote pyroptosis of HIV-1 infected cells. These NNRTIs stimulate dimerization of the Gag-Pol polyprotein, resulting in premature HIV-1 protease (PR) dimerization and cleavage of intracellular CARD8. A unique cell-based high-throughput screen was developed to identify potent compounds activating the CARD8 inflammasome through Gag-Pol dimerization.

View Article and Find Full Text PDF