Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rice blast (caused by Magnaporthe oryzae) and sheath rot diseases (caused by Sarocladium oryzae) are the most predominant seed-borne pathogens of rice. The detection of both pathogens in rice seed is essential to avoid production losses. In the present study, a microdevice platform was designed, which works on the principles of loop-mediated isothermal amplification (LAMP) to detect M. oryzae and S. oryzae in rice seeds. Initially, a LAMP, polymerase chain reaction (PCR), quantitative PCR (qPCR), and helicase dependent amplification (HDA) assays were developed with primers, specifically targeting M. oryzae and S. oryzae genome. The LAMP assay was highly efficient and could detect the presence of M. oryzae and S. oryzae genome at a concentration down to 100 fg within 20 min at 60 °C. Further, the sensitivity of the LAMP, HDA, PCR, and qPCR assays were compared wherein; the LAMP assay was highly sensitive up to 100 fg of template DNA. Using the optimized LAMP assay conditions, a portable foldable microdevice platform was developed to detect M. oryzae and S. oryzae in rice seeds. The foldable microdevice assay was similar to that of conventional LAMP assay with respect to its sensitivity (up to 100 fg), rapidity (30 min), and specificity. This platform could serve as a prototype for developing on-field diagnostic kits to be used at the point of care centers for the rapid diagnosis of M. oryzae and S. oryzae in rice seeds. This is the first study to report a LAMP-based foldable microdevice platform to detect any plant pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794292PMC
http://dx.doi.org/10.1038/s41598-020-80644-zDOI Listing

Publication Analysis

Top Keywords

oryzae oryzae
20
foldable microdevice
16
microdevice platform
16
oryzae rice
16
lamp assay
16
oryzae
14
rice seeds
12
lamp-based foldable
8
magnaporthe oryzae
8
sarocladium oryzae
8

Similar Publications

Discovery and phylogeny of a ricin-B-like domain from rice.

Carbohydr Res

September 2025

Laboratory for Biochemistry & Glycobiology, Ghent University, Department of Biotechnology, Ghent, Belgium. Electronic address:

Lectins are carbohydrate-binding proteins which play key roles in various biological processes, including cell signaling, pathogen recognition and development. Previous research conducted on ricin-B lectin domains and carbohydrate-binding modules of family 13 (CBM13) illustrated the striking resemblances between these two groups of protein domains. In this study, we report on the discovery, identification and putative biochemical characteristics of a ricin-B-like domain that is unique for GH27 enzymes from land plants, identified in the OsAPSE enzyme from Japanese rice (Oryza sativa L.

View Article and Find Full Text PDF

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

Radiation dermatitis is a common side effect of radiotherapy, affecting up to 95% of cancer patients receiving radiation therapy and often leading to skin damage, inflammation, and ulceration. The pathogenesis of radiation dermatitis involves complex mechanisms, such as the production of reactive oxygen species (ROS) and sustained inflammatory responses. Current treatments, including topical steroids, moisturisers, and non-steroidal anti-inflammatory drugs (NSAIDs), often provide limited efficacy, primarily addressing symptoms rather than the underlying pathophysiological processes.

View Article and Find Full Text PDF