Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The virulence of Clostridioides difficile (formerly Clostridium difficile) is mainly caused by its two toxins A and B. Their formation is significantly regulated by metabolic processes. Here we investigated the influence of various sugars (glucose, fructose, mannose, trehalose), sugar derivatives (mannitol and xylitol) and L-lactate on toxin synthesis. Fructose, mannose, trehalose, mannitol and xylitol in the growth medium resulted in an up to 2.2-fold increase of secreted toxin. Low glucose concentration of 2 g/L increased the toxin concentration 1.4-fold compared to growth without glucose, while high glucose concentrations in the growth medium (5 and 10 g/L) led to up to 6.6-fold decrease in toxin formation. Transcriptomic and metabolic investigation of the low glucose effect pointed towards an inactive CcpA and Rex regulatory system. L-lactate (500 mg/L) significantly reduced extracellular toxin formation. Transcriptome analyses of the later process revealed the induction of the lactose utilization operon encoding lactate racemase (larA), electron confurcating lactate dehydrogenase (CDIF630erm_01321) and the corresponding electron transfer flavoprotein (etfAB). Metabolome analyses revealed L-lactate consumption and the formation of pyruvate. The involved electron confurcation process might be responsible for the also observed reduction of the NAD+/NADH ratio which in turn is apparently linked to reduced toxin release from the cell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7790285PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244988PLOS

Publication Analysis

Top Keywords

low glucose
12
toxin formation
12
glucose concentrations
8
clostridioides difficile
8
fructose mannose
8
mannose trehalose
8
mannitol xylitol
8
growth medium
8
toxin
7
glucose
6

Similar Publications

Introduction: This post hoc analysis of an A Toujeo Observational Study (ATOS) aims to evaluate the real-world effectiveness and safety of insulin glargine 300 U/ml (Gla-300) in high-risk subgroups of insulin-naïve people with type 2 diabetes (PwT2D) from multiple geographical regions (Asia, the Middle East, North Africa, Latin America, and Eastern Europe).

Methods: In these post hoc analyses of ATOS, a real-world, 12-month, prospective study included 4422 insulin-naïve adults (age ≥ 18 years) with type 2 diabetes (T2D) uncontrolled (HbA > 7% and ≤ 11%) on one or more oral antidiabetic drugs (OADs) who initiated Gla-300 treatment as per routine practice. Primary and secondary endpoints were studied according to renal impairment (RI) status (without or with) and age group ( View Article and Find Full Text PDF

Background: Low-value care provides little or no benefit to patients, or its risk of harm outweighs the potential benefits. Non-nursing tasks refer to tasks performed by nurses below their scope of practice. With increasing pressure on the global nursing workforce, it is necessary to identify these concepts to deliver fundamental care.

View Article and Find Full Text PDF

Low-protein Calorie-restriction Mitigates Diabetic Mice Kidney Injury via the Gut-Kidney Axis.

Int J Vitam Nutr Res

August 2025

Department of Endocrinology, Affiliated Hospital of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 210028 Nanjing, Jiangsu, China.

Background: Dietary interventions have exhibited promise in restoring microbial balance in chronic kidney disease. A low-protein calorie-restricted diet can reduce kidney injury in diabetic rodents. However, whether the renoprotective effects of this dietary intervention in murine diabetic kidney disease models are linked to gut microbiota modulation remains to be determined.

View Article and Find Full Text PDF

Purpose: Glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent major advancements in the management of type 2 diabetes. However, many patients remain suboptimally managed with these therapies. This underutilization highlights the need for practical implementation strategies in real-world settings.

View Article and Find Full Text PDF

Diabetes mellitus is a metabolic condition leading to elevated blood glucose levels due to insulin deficiency, insulin resistance, or a combination of both. Chronically raised blood glucose levels can lead to a broad variety of microvascular and macrovascular complications. Neurological disorders are a common manifestation of diabetes mellitus, and poorly controlled diabetes mellitus frequently causes peripheral sensorimotor polyneuropathy and autonomic neuropathy.

View Article and Find Full Text PDF