98%
921
2 minutes
20
Optimizing and monitoring the growth conditions of Pt films, often used as bottom electrodes in multiferroic material systems, represents a highly relevant issue that is of importance for controlling the crystalline quality and performance of ferroelectric oxides such as, e.g. LuFeO. We performed a time-resolved monitoring of the growth and morphology of Pt films during pulsed laser deposition (PLD) in dependence on the grown film effective thickness and on the growth temperature using grazing incidence small-angle X-ray scattering (GISAXS). Through real-time analysis and modeling of GISAXS patterns, we could fully characterize the influence of on the morphology and on the growth kinetics of the Pt layers. Consequently, critical and characteristic effective thicknesses for the transitions nucleation phase (I)/coalescence phase (II) and coalescence phase (II)/coarsening phase (III) could be determined. In combination with complementary microscopic imaging and chemical mapping via combined SEM/EDXS, we demonstrate the occurrence of a morphological progression in the Pt PLD-grown Pt films, changing from grains at room temperature to a 3D-island morphology at 300 °C, further to a hole-free structure at 500 °C, and finally to a channel structure for 700 and 900 °C. The film topography, as characterized by atomic force microscopy (AFM), favors the PLD growth of Pt layers at temperatures beyond 700 °C where the film is homogeneous, continuous, and hole-free with a flat and smooth surface. The double dependency of the percolation transition on the film effective thickness and on the growth temperature has been established by measuring the electrical conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02952 | DOI Listing |
Adv Mater
September 2025
Soft Matter Optics Group, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, Wroclaw, 50-370, Poland.
Nematic Liquid Crystals (LCs), noted for their simple molecular alignment and broad use in optoelectronics, remain unmodified for over a century. However, in 2017, a unique polar phase, the ferroelectric nematic (N), is confirmed. Subsequently, in 2024, the revolutionary spontaneous mirror symmetry breaking of ferroelectric twist-bend nematic chiral structures (N phase) is demonstrated.
View Article and Find Full Text PDFContour Tunable Resurfacing Laser (TRL™) is an erbium: yttrium aluminum garnet (YAG) fully ablative laser commonly used to treat the delicate lower eyelid skin for undereye rejuvenation. Post-treatment patients experience discomfort and extensive downtime. This pilot study incorporated an innovative post-procedure treatment that addresses patient concerns to skin rejuvenation procedures to improve patient relief and recovery, while improving patient retention.
View Article and Find Full Text PDFSci Adv
September 2025
Australian Research Council Centre of Excellence for Transformative Meta-Optical Systems, Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2600, Australia.
Surface-emitting lasers featuring optical bound states in the continuum (BICs) have recently emerged as a promising alternative to vertical cavity surface-emitting lasers. However, structural damage caused by top-down fabrication processes remains as a major obstacle that limits device performance. Here, we overcome this bottleneck by demonstrating surface-emitting quasi-BIC lasers fabricated with a bottom-up, etching-free process.
View Article and Find Full Text PDFPLoS One
September 2025
The College of Resource Environment and Tourism, Capital Normal University, Beijing, China.
With the growing global emphasis on forest resource monitoring, evaluating the accuracy of retrieving key individual tree parameters-such as tree position, tree height, and diameter at breast height (DBH)-using Terrestrial Laser Scanning (TLS) has become an important research focus. TLS has been widely applied in forest surveys due to its significant advantages in data acquisition efficiency and measurement precision. However, studies on the accuracy of extracting forest parameters from single-station, single-scan TLS data remain limited, underscoring the need for systematic evaluation and validation.
View Article and Find Full Text PDFLasers Med Sci
September 2025
University of Alkafeel, Najaf, Iraq.